torchvision 是 pytorch 中一个很好用的包,主要由 3 个子包,分别是 torchvision.datasetstorchvision.modelstorchvision.transforms

在 torchvision 中实现了几个模型,包含 AlexNet,DenseNet,ResNet,VGG 等常用结构,并提供了预训练模型。

import torchvision
model = torchvision.models.resnet50(pretrained=True)

导入模型:

# 不需要预训练模型的参数来初始化
model = torchvision.models.resnet50(pretrained=False)

# pretrained参数默认是False,等价于
model = torchvision.models.resnet50()

1)实现了不同层数的ResNet模型

all 变量定义了可以从外部 import 的函数名或类名。根据 model_urls 的地址可以加载网络与训练权重

import torch
import torch.nn as nn
from .utils import load_state_dict_from_url

# 实现了不同层数的ResNet模型
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
           'resnet152', 'resnext50_32x4d', 'resnext101_32x8d',
           'wide_resnet50_2', 'wide_resnet101_2']
           
model_urls = {
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
    'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
    'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
    'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
    'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
}

2)3*3的卷积模板

卷积步长 stride=1,扩张大小 dilation=1(也就是 padding),in_planes 和 out_planes 分别是输入和输出的通道数,groups 是分组卷积参数,这里 groups=1 相当于没有分组

def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=dilation, groups=groups, bias=False, dilation=dilation)

3)1*1的卷积模板

卷积步长 stride=1

def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)

4)基础模块

基础模块里定义了 ResNet 最重要的残差模块,BasicBlock 是基础版本,使用了两个 3*3 的卷积,卷积后接着 BN 和 ReLU
【1】super(BasicBlock, self).__init__() 这句是固定的标准写法。一般神经网络的类都继承自 torch.nn.Module__init()__forward() 是自定义类的两个主要函数,在自定义类的 __init()__ 中需要添加一句 super(Net, self).__init()__,其中 Net 是自定义的类名,用于继承父类的初始化函数。注意在 __init()__ 中只是对神经网络的模块进行了声明,真正的搭建是在 forward() 中实现。自定义类的成员都通过 self 指针来访问,所以参数列表中都包含了 self
【2】out += identity 就是 ResNet 的精髓,在输出上叠加了输入 pytorch 将resnet模型进行INT8量化 resnet pytorch代码_ide
【3】if self.downsample is not None 就是在进行下采样,如果需要的话

class BasicBlock(nn.Module):
    expansion = 1
    __constants__ = ['downsample']

    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
                 base_width=64, dilation=1, norm_layer=None):
        super(BasicBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError('BasicBlock only supports groups=1 and base_width=64')
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out

5)Bottleneck 模块

与基础版本的 BasicBlock 不同的是这里有 3 个卷积,分别为pytorch 将resnet模型进行INT8量化 resnet pytorch代码_python_02pytorch 将resnet模型进行INT8量化 resnet pytorch代码_卷积_03pytorch 将resnet模型进行INT8量化 resnet pytorch代码_python_02大小的卷积核,分别用于压缩维度、卷积处理、恢复维度。

inplanes 是输入通道数,planes 是输出通道数/expansion,expansion 是对输出通道数的倍乘,注意在基础版本 BasicBlock 中 expansion 是 1,此时相当于没有倍乘,输出的通道数就等于 planes。

注意: 在使用 Bottleneck 时,它先对通道数进行压缩,再放大,所以传入的参数 planes 不是实际输出的通道数,而是 block 内部压缩后的通道数,真正的输出通道数为 plane*expansion

这样做的主要目的是,使用 Bottleneck 结构可以减少网络参数数量

class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
                 base_width=64, dilation=1, norm_layer=None):
        super(Bottleneck, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        width = int(planes * (base_width / 64.)) * groups
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out

原本的卷积是左图,换成 Bottleneck 结构后就成了右图,这样使得网络参数减少很多,训练也相对容易一些:

pytorch 将resnet模型进行INT8量化 resnet pytorch代码_python_05


两个 1*1 的卷积分别负责减少通道数量和恢复通道数量,从而为中间的 3*3 卷积降低参数量,比如这里第一个卷积将 256 维的 channel 先降到 64 维,然后再通过第二个卷积恢复到 256 维,整体的参数量为 (1x1x256)x64 + (3x3x64)x64 + (1x1x64)x256 = 69632,而不使用 Bottleneck 结构的话,就是两个 3x3x256 的卷积,参数数目为 (3x3x256)x256x2 = 1179648,相差 16.94 倍。

虽然减少通道数量会有信息损失,但是影响不太大。

6)残差网络主体

pytorch 将resnet模型进行INT8量化 resnet pytorch代码_深度学习_06


ResNet 共有五个阶段,其中第一阶段为一个 7*7 的卷积,stride = 2,padding = 3,然后经过 BN、ReLU 和 maxpooling,此时特征图的尺寸已成为输入的 1/4

接下来是四个阶段,也就是代码中 layer1,layer2,layer3,layer4。这里用 _make_layer 函数产生四个 Layer,需要用户输入每个 layer 的 block 数目( 即layers列表 )以及采用的 block 类型(基础版 BasicBlock 还是 Bottleneck 版)

_make_layer 方法的第一个输入参数 block 选择要使用的模块是 BasicBlock 还是 Bottleneck 类,第二个输入参数 planes 是该模块的输出通道数,第三个输入参数 blocks 是每个 blocks 中包含多少个 residual 子结构。

class ResNet(nn.Module):

    def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
                 groups=1, width_per_group=64, replace_stride_with_dilation=None,
                 norm_layer=None):
        super(ResNet, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer

        self.inplanes = 64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError("replace_stride_with_dilation should be None "
                             "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
                                       dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
                                       dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
                                       dilate=replace_stride_with_dilation[2])
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)

    def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                norm_layer(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
                            self.base_width, previous_dilation, norm_layer))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes, groups=self.groups,
                                base_width=self.base_width, dilation=self.dilation,
                                norm_layer=norm_layer))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)

        return x

nn.Sequential:nn.Sequential讲解

7)其他模型的定义

这里可以直接调用上面的 ResNet 对象,输入 block 类型和 block 数目,这里可以看到 resnet18 和 resnet34 用的是 BasicBlock,因为此时网络还不深,不太需要考虑模型的效率,而当网络加深到 52,101,152 层时则有必要引入 Bottleneck 结构,方便模型的存储和计算。

另外是否加载预训练权重是可选的,具体就是调用 model_zoo 加载指定链接地址的序列化文件,反序列化为权重文件。

pretrained 参数默认是 False,**kwargs 可以将不定数量的参数传递给一个函数,对应的还有 *args,用于传递非键值对的可变数量的参数列表,而 **kwargs 允许将一个不定长度的键值对作为参数传递给一个函数。

如果参数 pretrained 是 True,那么会通过 model_zoo.py 中的 load_url 函数根据上面 model_urls 字典下载或导入相应的预训练模型。

最后用 model 的 load_state_dict 方法用预训练的模型参数来初始化你构建的网络结构,该方法有一个重要参数是 strict,默认值为 True,表示预训练模型的层和你的网络结构层严格对应相等(比如维度和层名)。

def _resnet(arch, block, layers, pretrained, progress, **kwargs):
    model = ResNet(block, layers, **kwargs)
    if pretrained:
        state_dict = load_state_dict_from_url(model_urls[arch],
                                              progress=progress)
        model.load_state_dict(state_dict)
    return model

具体模型的定义:

def resnet18(pretrained=False, progress=True, **kwargs):
    r"""ResNet-18 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
                   **kwargs)


def resnet34(pretrained=False, progress=True, **kwargs):
    r"""ResNet-34 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
                   **kwargs)


def resnet50(pretrained=False, progress=True, **kwargs):
    r"""ResNet-50 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
                   **kwargs)


def resnet101(pretrained=False, progress=True, **kwargs):
    r"""ResNet-101 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,
                   **kwargs)


def resnet152(pretrained=False, progress=True, **kwargs):
    r"""ResNet-152 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,
                   **kwargs)


def resnext50_32x4d(pretrained=False, progress=True, **kwargs):
    r"""ResNeXt-50 32x4d model from
    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs['groups'] = 32
    kwargs['width_per_group'] = 4
    return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3],
                   pretrained, progress, **kwargs)


def resnext101_32x8d(pretrained=False, progress=True, **kwargs):
    r"""ResNeXt-101 32x8d model from
    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs['groups'] = 32
    kwargs['width_per_group'] = 8
    return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3],
                   pretrained, progress, **kwargs)


def wide_resnet50_2(pretrained=False, progress=True, **kwargs):
    r"""Wide ResNet-50-2 model from
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
    channels, and in Wide ResNet-50-2 has 2048-1024-2048.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs['width_per_group'] = 64 * 2
    return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3],
                   pretrained, progress, **kwargs)


def wide_resnet101_2(pretrained=False, progress=True, **kwargs):
    r"""Wide ResNet-101-2 model from
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
    channels, and in Wide ResNet-50-2 has 2048-1024-2048.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs['width_per_group'] = 64 * 2
    return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3],
                   pretrained, progress, **kwargs)

Resnet34网络结构图

pytorch 将resnet模型进行INT8量化 resnet pytorch代码_python_07

Resnet101网络结构图

pytorch 将resnet模型进行INT8量化 resnet pytorch代码_python_08


pytorch 将resnet模型进行INT8量化 resnet pytorch代码_深度学习_09