锁和被保护资源之间的关系

我们把一段需要互斥执行的代码称为临界区。线程在进入临界区之前,首先尝试加锁 lock(),如果成功,则进入临界区,此时我们称这个线程持有锁;否则呢就等待,直到持有锁的线程解锁;持有锁的线程执行完临界区的代码后,执行解锁 unlock()。这样理解本身没有问题,但却很容易让我们忽视两个非常非常重要的点:我们锁的是什么?我们保护的又是什么?

我们知道在现实世界里,锁和锁要保护的资源是有对应关系的,比如你用你家的锁保护你家的东西,我用我家的锁保护我家的东西。在并发编程世界里,锁和资源也应该有这个关系,因此,一个好的锁模型如下图所示。

javaSHA解密方法 java解锁_javaSHA解密方法

锁模型

首先,我们要把临界区要保护的资源标注出来,如图中临界区里增加了一个元素:受保护的资源 R;其次,我们要保护资源 R 就得为它创建一把锁 LR;最后,针对这把锁 LR,我们还需在进出临界区时添上加锁操作和解锁操作。另外,在锁 LR 和受保护资源之间,我特地用一条线做了关联,这个关联关系非常重要。很多并发 Bug 的出现都是因为把它忽略了,然后就出现了类似锁自家门来保护他家资产的事情,这样的 Bug 非常不好诊断,因为潜意识里我们认为已经正确加锁了。

受保护资源和锁之间的关联关系非常重要,他们的关系是怎样的呢?一个合理的关系是:受保护资源和锁之间的关联关系是 N:1 的关系

互斥锁,在并发领域的知名度极高,只要有了并发问题,大家首先容易想到的就是加锁,因为大家都知道,加锁能够保证执行临界区代码的互斥性。这样理解虽然正确,但是却不能够指导你真正用好互斥锁。临界区的代码是操作受保护资源的路径,类似于球场的入口,入口一定要检票,也就是要加锁,但不是随便一把锁都能有效。所以必须深入分析锁定的对象和受保护资源的关系,综合考虑受保护资源的访问路径,多方面考量才能用好互斥锁。

synchronized 是 Java 在语言层面提供的互斥原语,其实 Java 里面还有很多其他类型的锁,但作为互斥锁,原理都是相通的:锁,一定有一个要锁定的对象,至于这个锁定的对象要保护的资源以及在哪里加锁 / 解锁,就属于设计层面的事情了。

对如何保护多个资源已经很有心得了,关键是要分析多个资源之间的关系。如果资源之间没有关系,很好处理,每个资源一把锁就可以了。如果资源之间有关联关系,就要选择一个粒度更大的锁,这个锁应该能够覆盖所有相关的资源。除此之外,还要梳理出有哪些访问路径,所有的访问路径都要设置合适的锁,这个过程可以类比一下门票管理

我们再引申一下上面提到的关联关系,关联关系如果用更具体、更专业的语言来描述的话,其实是一种“原子性”特征,我们提到的原子性,主要是面向 CPU 指令的,转账操作的原子性则是属于是面向高级语言的,不过它们本质上是一样的。

“原子性”的本质是什么?其实不是不可分割,不可分割只是外在表现,其本质是多个资源间有一致性的要求,操作的中间状态对外不可见。例如,在 32 位的机器上写 long 型变量有中间状态(只写了 64 位中的 32 位),在银行转账的操作中也有中间状态(账户 A 减少了 100,账户 B 还没来得及发生变化)。所以解决原子性问题,是要保证中间状态对外不可见。 

来看一个例子,银行转账的例子:

class Account {
  private int balance;
  // 转账
  void transfer(Account target, int amt){
    synchronized(Account.class) {
      if (this.balance > amt) {
        this.balance -= amt;
        target.balance += amt;
      }
    }
  } 
}

这里用 Account.class 作为互斥锁,来解决银行业务里面的转账问题,虽然这个方案不存在并发问题,但是所有账户的转账操作都是串行的,例如账户 A 转账户 B、账户 C 转账户 D 这两个转账操作现实世界里是可以并行的,但是在这个方案里却被串行化了,这样的话,性能太差。

试想互联网支付盛行的当下,8 亿网民每人每天一笔交易,每天就是 8 亿笔交易;每笔交易都对应着一次转账操作,8 亿笔交易就是 8 亿次转账操作,也就是说平均到每秒就是近 1 万次转账操作,若所有的转账操作都串行,性能完全不能接受。

那下面我们就尝试着把性能提升一下。

向现实世界要答案

现实世界里,账户转账操作是支持并发的,而且绝对是真正的并行,银行所有的窗口都可以做转账操作。只要我们能仿照现实世界做转账操作,串行的问题就解决了。

我们试想在古代,没有信息化,账户的存在形式真的就是一个账本,而且每个账户都有一个账本,这些账本都统一存放在文件架上。银行柜员在给我们做转账时,要去文件架上把转出账本和转入账本都拿到手,然后做转账。这个柜员在拿账本的时候可能遇到以下三种情况:

  1. 文件架上恰好有转出账本和转入账本,那就同时拿走;
  2. 如果文件架上只有转出账本和转入账本之一,那这个柜员就先把文件架上有的账本拿到手,同时等着其他柜员把另外一个账本送回来;
  3. 转出账本和转入账本都没有,那这个柜员就等着两个账本都被送回来。

上面这个过程在编程的世界里怎么实现呢?其实用两把锁就实现了,转出账本一把,转入账本另一把。在 transfer() 方法内部,我们首先尝试锁定转出账户 this(先把转出账本拿到手),然后尝试锁定转入账户 target(再把转入账本拿到手),只有当两者都成功时,才执行转账操作。这个逻辑可以图形化为下图这个样子。

javaSHA解密方法 java解锁_javaSHA解密方法_02

两个转账操作并行示意图

而至于详细的代码实现,如下所示。经过这样的优化后,账户 A 转账户 B 和账户 C 转账户 D 这两个转账操作就可以并行了。

class Account {
  private int balance;
  // 转账
  void transfer(Account target, int amt){
    // 锁定转出账户
    synchronized(this) {              
      // 锁定转入账户
      synchronized(target) {           
        if (this.balance > amt) {
          this.balance -= amt;
          target.balance += amt;
        }
      }
    }
  } 
}

没有免费的午餐

上面的实现看上去很完美,并且也算是将锁用得出神入化了。相对于用 Account.class 作为互斥锁,锁定的范围太大,而我们锁定两个账户范围就小多了,这样的锁,叫细粒度锁。使用细粒度锁可以提高并行度,是性能优化的一个重要手段。

这个时候可能你已经开始警觉了,使用细粒度锁这么简单,有这样的好事,是不是也要付出点什么代价啊?编写并发程序就需要这样时时刻刻保持谨慎。

的确,使用细粒度锁是有代价的,这个代价就是可能会导致死锁。

在详细介绍死锁之前,我们先看看现实世界里的一种特殊场景。如果有客户找柜员张三做个转账业务:账户 A 转账户 B 100 元,此时另一个客户找柜员李四也做个转账业务:账户 B 转账户 A 100 元,于是张三和李四同时都去文件架上拿账本,这时候有可能凑巧张三拿到了账本 A,李四拿到了账本 B。张三拿到账本 A 后就等着账本 B(账本 B 已经被李四拿走),而李四拿到账本 B 后就等着账本 A(账本 A 已经被张三拿走),他们要等多久呢?他们会永远等待下去…因为张三不会把账本 A 送回去,李四也不会把账本 B 送回去。我们姑且称为死等吧。

javaSHA解密方法 java解锁_javaSHA解密方法_03

转账业务中的“死等”

现实世界里的死等,就是编程领域的死锁了。死锁的一个比较专业的定义是:一组互相竞争资源的线程因互相等待,导致“永久”阻塞的现象。

上面转账的代码是怎么发生死锁的呢?我们假设线程 T1 执行账户 A 转账户 B 的操作,账户 A.transfer(账户 B);同时线程 T2 执行账户 B 转账户 A 的操作,账户 B.transfer(账户 A)。当 T1 和 T2 同时执行完①处的代码时,T1 获得了账户 A 的锁(对于 T1,this 是账户 A),而 T2 获得了账户 B 的锁(对于 T2,this 是账户 B)。之后 T1 和 T2 在执行②处的代码时,T1 试图获取账户 B 的锁时,发现账户 B 已经被锁定(被 T2 锁定),所以 T1 开始等待;T2 则试图获取账户 A 的锁时,发现账户 A 已经被锁定(被 T1 锁定),所以 T2 也开始等待。于是 T1 和 T2 会无期限地等待下去,也就是我们所说的死锁了。

class Account {
  private int balance;
  // 转账
  void transfer(Account target, int amt){
    // 锁定转出账户
    synchronized(this){     ①
      // 锁定转入账户
      synchronized(target){ ②
        if (this.balance > amt) {
          this.balance -= amt;
          target.balance += amt;
        }
      }
    }
  } 
}

关于这种现象,我们还可以借助资源分配图来可视化锁的占用情况(资源分配图是个有向图,它可以描述资源和线程的状态)。其中,资源用方形节点表示,线程用圆形节点表示;资源中的点指向线程的边表示线程已经获得该资源,线程指向资源的边则表示线程请求资源,但尚未得到。转账发生死锁时的资源分配图就如下图所示,一个“各据山头死等”的尴尬局面。

javaSHA解密方法 java解锁_临界区_04

转账发生死锁时的资源分配图

如何预防死锁

并发程序一旦死锁,一般没有特别好的方法,很多时候我们只能重启应用。因此,解决死锁问题最好的办法还是规避死锁。

那如何避免死锁呢?要避免死锁就需要分析死锁发生的条件,有个叫 Coffman 的牛人早就总结过了,只有以下这四个条件都发生时才会出现死锁:

  1. 互斥,共享资源 X 和 Y 只能被一个线程占用;
  2. 占有且等待,线程 T1 已经取得共享资源 X,在等待共享资源 Y 的时候,不释放共享资源 X;
  3. 不可抢占,其他线程不能强行抢占线程 T1 占有的资源;
  4. 循环等待,线程 T1 等待线程 T2 占有的资源,线程 T2 等待线程 T1 占有的资源,就是循环等待。

反过来分析,也就是说只要我们破坏其中一个,就可以成功避免死锁的发生。

其中,互斥这个条件我们没有办法破坏,因为我们用锁为的就是互斥。不过其他三个条件都是有办法破坏掉的,到底如何做呢?

  1. 对于“占用且等待”这个条件,我们可以一次性申请所有的资源,这样就不存在等待了。
  2. 对于“不可抢占”这个条件,占用部分资源的线程进一步申请其他资源时,如果申请不到,可以主动释放它占有的资源,这样不可抢占这个条件就破坏掉了。
  3. 对于“循环等待”这个条件,可以靠按序申请资源来预防。所谓按序申请,是指资源是有线性顺序的,申请的时候可以先申请资源序号小的,再申请资源序号大的,这样线性化后自然就不存在循环了。

我们已经从理论上解决了如何预防死锁,那具体如何体现在代码上呢?下面我们就来尝试用代码实践一下这些理论。

1. 破坏占用且等待条件

从理论上讲,要破坏这个条件,可以一次性申请所有资源。在现实世界里,就拿前面我们提到的转账操作来讲,它需要的资源有两个,一个是转出账户,另一个是转入账户,当这两个账户同时被申请时,我们该怎么解决这个问题呢?

可以增加一个账本管理员,然后只允许账本管理员从文件架上拿账本,也就是说柜员不能直接在文件架上拿账本,必须通过账本管理员才能拿到想要的账本。例如,张三同时申请账本 A 和 B,账本管理员如果发现文件架上只有账本 A,这个时候账本管理员是不会把账本 A 拿下来给张三的,只有账本 A 和 B 都在的时候才会给张三。这样就保证了“一次性申请所有资源”。

javaSHA解密方法 java解锁_临界区_05

通过账本管理员拿账本

对应到编程领域,“同时申请”这个操作是一个临界区,我们也需要一个角色(Java 里面的类)来管理这个临界区,我们就把这个角色定为 Allocator。它有两个重要功能,分别是:同时申请资源 apply() 和同时释放资源 free()。账户 Account 类里面持有一个 Allocator 的单例(必须是单例,只能由一个人来分配资源)。当账户 Account 在执行转账操作的时候,首先向 Allocator 同时申请转出账户和转入账户这两个资源,成功后再锁定这两个资源;当转账操作执行完,释放锁之后,我们需通知 Allocator 同时释放转出账户和转入账户这两个资源。具体的代码实现如下。

class Allocator {
  private List<Object> als =
    new ArrayList<>();
  // 一次性申请所有资源
  synchronized boolean apply(
    Object from, Object to){
    if(als.contains(from) ||
         als.contains(to)){
      return false;  
    } else {
      als.add(from);
      als.add(to);  
    }
    return true;
  }
  // 归还资源
  synchronized void free(
    Object from, Object to){
    als.remove(from);
    als.remove(to);
  }
}
 
class Account {
  // actr 应该为单例
  private Allocator actr;
  private int balance;
  // 转账
  void transfer(Account target, int amt){
    // 一次性申请转出账户和转入账户,直到成功
    while(!actr.apply(this, target))
      ;
    try{
      // 锁定转出账户
      synchronized(this){              
        // 锁定转入账户
        synchronized(target){           
          if (this.balance > amt){
            this.balance -= amt;
            target.balance += amt;
          }
        }
      }
    } finally {
      actr.free(this, target)
    }
  } 
}

2. 破坏不可抢占条件

破坏不可抢占条件看上去很简单,核心是要能够主动释放它占有的资源,这一点 synchronized 是做不到的。原因是 synchronized 申请资源的时候,如果申请不到,线程直接进入阻塞状态了,而线程进入阻塞状态,啥都干不了,也释放不了线程已经占有的资源。

你可能会质疑,“Java 作为排行榜第一的语言,这都解决不了?”你的怀疑很有道理,Java 在语言层次确实没有解决这个问题,不过在 SDK 层面还是解决了的,java.util.concurrent 这个包下面提供的 Lock 是可以轻松解决这个问题的。关于这个话题,咱们后面会详细讲。

3. 破坏循环等待条件

破坏这个条件,需要对资源进行排序,然后按序申请资源。这个实现非常简单,我们假设每个账户都有不同的属性 id,这个 id 可以作为排序字段,申请的时候,我们可以按照从小到大的顺序来申请。比如下面代码中,①~⑥处的代码对转出账户(this)和转入账户(target)排序,然后按照序号从小到大的顺序锁定账户。这样就不存在“循环”等待了。

class Account {
  private int id;
  private int balance;
  // 转账
  void transfer(Account target, int amt){
    Account left = this        ①
    Account right = target;    ②
    if (this.id > target.id) { ③
      left = target;           ④
      right = this;            ⑤
    }                          ⑥
    // 锁定序号小的账户
    synchronized(left){
      // 锁定序号大的账户
      synchronized(right){ 
        if (this.balance > amt){
          this.balance -= amt;
          target.balance += amt;
        }
      }
    }
  } 
}

如果在获取多个锁的时候操作耗时非常短,而且并发冲突量也不大时,这个方案还挺不错的,因为这种场景下,循环上几次或者几十次就能一次性获取转出账户和转入账户了。但是如果 apply() 操作耗时长,或者并发冲突量大的时候,循环等待这种方案就不适用了,因为在这种场景下,可能要循环上万次才能获取到锁,太消耗 CPU 了。

其实在这种场景下,最好的方案应该是:如果线程要求的条件(转出账本和转入账本同在文件架上)不满足,则线程阻塞自己,进入等待状态;当线程要求的条件(转出账本和转入账本同在文件架上)满足后,通知等待的线程重新执行。其中,使用线程阻塞的方式就能避免循环等待消耗 CPU 的问题。

那 Java 语言是否支持这种等待 - 通知机制呢?答案是:一定支持(毕竟占据排行榜第一那么久)。下面我们就来看看 Java 语言是如何支持等待 - 通知机制的。

用 synchronized 实现等待 - 通知机制

在 Java 语言里,等待 - 通知机制可以有多种实现方式,比如 Java 语言内置的 synchronized 配合 wait()、notify()、notifyAll() 这三个方法就能轻松实现。

如何用 synchronized 实现互斥锁,你应该已经很熟悉了。在下面这个图里,左边有一个等待队列,同一时刻,只允许一个线程进入 synchronized 保护的临界区(这个临界区可以看作大夫的诊室),当有一个线程进入临界区后,其他线程就只能进入图中左边的等待队列里等待(相当于患者分诊等待)。这个等待队列和互斥锁是一对一的关系,每个互斥锁都有自己独立的等待队列。

javaSHA解密方法 java解锁_临界区_06

wait() 操作工作原理图

在并发程序中,当一个线程进入临界区后,由于某些条件不满足,需要进入等待状态,Java 对象的 wait() 方法就能够满足这种需求。如上图所示,当调用 wait() 方法后,当前线程就会被阻塞,并且进入到右边的等待队列中,这个等待队列也是互斥锁的等待队列。 线程在进入等待队列的同时,会释放持有的互斥锁,线程释放锁后,其他线程就有机会获得锁,并进入临界区了。

notify() 是会随机地通知等待队列中的一个线程,而 notifyAll() 会通知等待队列中的所有线程。从感觉上来讲,应该是 notify() 更好一些,因为即便通知所有线程,也只有一个线程能够进入临界区。但那所谓的感觉往往都蕴藏着风险,实际上使用 notify() 也很有风险,它的风险在于可能导致某些线程永远不会被通知到。

具体参考下面的代码:

class Allocator {
  private List<Object> als;
  // 一次性申请所有资源
  synchronized void apply(
    Object from, Object to){
    // 经典写法
    while(als.contains(from) ||
         als.contains(to)){
      try{
        wait();
      }catch(Exception e){
      }   
    } 
    als.add(from);
    als.add(to);  
  }
  // 归还资源
  synchronized void free(
    Object from, Object to){
    als.remove(from);
    als.remove(to);
    notifyAll();
  }
}

在上面的代码中,我用的是 notifyAll() 来实现通知机制,为什么不使用 notify() 呢?这二者是有区别的,notify() 是会随机地通知等待队列中的一个线程,而 notifyAll() 会通知等待队列中的所有线程。从感觉上来讲,应该是 notify() 更好一些,因为即便通知所有线程,也只有一个线程能够进入临界区。但那所谓的感觉往往都蕴藏着风险,实际上使用 notify() 也很有风险,它的风险在于可能导致某些线程永远不会被通知到。

假设我们有资源 A、B、C、D,线程 1 申请到了 AB,线程 2 申请到了 CD,此时线程 3 申请 AB,会进入等待队列(AB 分配给线程 1,线程 3 要求的条件不满足),线程 4 申请 CD 也会进入等待队列。我们再假设之后线程 1 归还了资源 AB,如果使用 notify() 来通知等待队列中的线程,有可能被通知的是线程 4,但线程 4 申请的是 CD,所以此时线程 4 还是会继续等待,而真正该唤醒的线程 3 就再也没有机会被唤醒了。

所以除非经过深思熟虑,否则尽量使用 notifyAll()。

总结

当我们在编程世界里遇到问题时,应不局限于当下,可以换个思路,向现实世界要答案,利用现实世界的模型来构思解决方案,这样往往能够让我们的方案更容易理解,也更能够看清楚问题的本质。

但是现实世界的模型有些细节往往会被我们忽视。因为在现实世界里,人太智能了,以致有些细节实在是显得太不重要了。在转账的模型中,我们为什么会忽视死锁问题呢?原因主要是在现实世界,我们会交流,并且会很智能地交流。而编程世界里,两个线程是不会智能地交流的。所以在利用现实模型建模的时候,我们还要仔细对比现实世界和编程世界里的各角色之间的差异。

我们今天这一篇文章主要讲了用细粒度锁来锁定多个资源时,要注意死锁的问题。这个就需要你能把它强化为一个思维定势,遇到这种场景,马上想到可能存在死锁问题。当你知道风险之后,才有机会谈如何预防和避免,因此,识别出风险很重要。

预防死锁主要是破坏三个条件中的一个,有了这个思路后,实现就简单了。但仍需注意的是,有时候预防死锁成本也是很高的。例如上面转账那个例子,我们破坏占用且等待条件的成本就比破坏循环等待条件的成本高,破坏占用且等待条件,我们也是锁了所有的账户,而且还是用了死循环 while(!actr.apply(this, target));方法,不过好在 apply() 这个方法基本不耗时。 在转账这个例子中,破坏循环等待条件就是成本最低的一个方案。

所以我们在选择具体方案的时候,还需要评估一下操作成本,从中选择一个成本最低的方案。