如果一条信息中包含更多用于纠错的位,且通过妥善安排这些纠错位使得不同的出错位产生不同的错误结果,那么我们就可以找出出错位了。在一个7位的信息中,单个位出错有7种可能,因此3个错误控制位就足以确定是否出错及哪一位出错了。

汉明码SECDED(single error correction, double error detection)版本另外加入一检测比特,可以侦测两个或以下同时发生的比特错误,并能够更正单一比特的错误。因此,当发送端与接收端的比特样式的汉明距离(Hamming distance)小于或等于1时(仅有1 bit发生错误),可实现可靠的通信。相对的,简单的奇偶检验码除了不能纠正错误之外,也只能侦测出奇数个的错误。
下列通用算法可以为任意位数字产生一个可以纠错一位的汉明码:
1.从1开始给数字的数据位(从左向右)标上序号, 1,2,3,4,5…
2.将这些数据位的位置序号转换为二进制,1, 10, 11, 100, 101,等。
3.数据位的位置序号中所有为二的幂次方的位(编号1,2,4,8,等,即数据位位置序号的二进制表示中只有一个1)是校验位
4.所有其它位置的数据位(数据位位置序号的二进制表示中至少2个是1)是数据位
5.每一位的数据包含在特定的两个或两个以上的校验位中,这些校验位取决于这些数据位的位置数值的二进制表示
(1) 校验位1覆盖了所有数据位位置序号的二进制表示倒数第一位是1的数据:1(校验位自身,这里都是二进制,下同),11,101,111,1001,等
(2) 校验位2覆盖了所有数据位位置序号的二进制表示倒数第二位是1的数据:10(校验位自身),11,110,111,1010,1011,等
(3) 校验位4覆盖了所有数据位位置序号的二进制表示倒数第三位是1的数据:100(校验位自身),101,110,111,1100,1101,1110,1111,等
(4) 校验位8覆盖了所有数据位位置序号的二进制表示倒数第四位是1的数据:1000(校验位自身),1001,1010,1011,1100,1101,1110,1111,等
(5) 简而言之,所有校验位覆盖了数据位置和该校验位位置的二进制与的值不为0的数。
采用奇校验还是偶校验都是可行的。偶校验从数学的角度看更简单一些,但在实践中并没有区别。校验位一般的规律可以如下表示:

观察上表可发现一个比较直观的规律:第i个检验位是第2(i-1)位,从该位开始,检验2(i-1)位,跳过2^(i-1)位……依次类推。例如上表中第3个检验位p4从第23-1=4位开始,检验4、5、6、7共4位,然后跳过8、9、10、11共4位,再检验12、13、14、15共4位…… [1]