opencv自带的stitching速度很慢,而且对多图容易出错,好象对竖着拍摄的图(高>宽)不能用。其中一个最大的原因是每一张图都要和其它的图去匹配,如果有10张图,除去自身不用匹配外,要匹配 10X(10-1) = 90 次。所以慢得不能忍受。(其实我认为光束平差法才是最慢的)
我们拍摄全景图的时候都是从左到右,或者从右到左,前后两张图一般有部分重合。如果按顺序读取图像,我们这里只对前后两张图匹配,然后连成一串即可。

1从列表(list.txt)文件装载图像文件名

2前后匹配

3计算匹配图像的相对位置

4以第一张图左上角点为原点,找到所有图的位置(同一坐标系)

5再计算最小,最大边界,并构建一个大图

6再把所有图像放到一个大图中

100张图片才耗时37s;(我这里的图像特征是离线的,当然也可以用orb,surf等等)

拼接效果,对于相机拍照(相机可以上下左右移动,但不能旋转)的情况拼接相当好。相机发生旋转扭动则效果很差。

opencv光流法测速 opencv光束法平差_opencv光流法测速

运行环境OpenCV2.4.9
#include "opencv2/core/core.hpp"
#include "highgui.h"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp"
#include <iostream>
#include <fstream>
#include <string>
#include<vector>
#include "opencv2/opencv_modules.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/stitching/detail/autocalib.hpp"
#include "opencv2/stitching/detail/blenders.hpp"
#include "opencv2/stitching/detail/camera.hpp"
#include "opencv2/stitching/detail/exposure_compensate.hpp"
#include "opencv2/stitching/detail/matchers.hpp"
#include "opencv2/stitching/detail/motion_estimators.hpp"
#include "opencv2/stitching/detail/seam_finders.hpp"
#include "opencv2/stitching/detail/util.hpp"
#include "opencv2/stitching/detail/warpers.hpp"
#include "opencv2/stitching/warpers.hpp"
#include "opencv2/calib3d/calib3d.hpp"

using namespace std;
using namespace cv;
using namespace cv::detail;

//如果图像太大缩小一半
Mat mynarrow(Mat img)
{
	Mat dst;//读出一个图
	if (img.rows*img.cols > 2400 * 1200)
		resize(img, dst, Size(), 0.5, 0.5);
	else
		dst = img.clone();
	return dst;
}

//利用findHomography函数利用匹配的关键点找出相应的变换:
Mat myfindHomography(std::vector< DMatch > & good_matches, std::vector<KeyPoint>& keypoints_1, std::vector<KeyPoint> & keypoints_2)
{
	//-- Localize the object from img_1 in img_2     //在img_2中定位来自img_1的对象
	std::vector<Point2f> obj;
	std::vector<Point2f> scene;

	for (unsigned int i = 0; i < good_matches.size(); i++)
	{
		//-- Get the keypoints from the good matches    //从好的匹配中获取关键点
		obj.push_back(keypoints_1[good_matches[i].queryIdx].pt);
		scene.push_back(keypoints_2[good_matches[i].trainIdx].pt);
	}

	//两个平面上相匹配的特征点求出变换公式
	Mat H = findHomography(obj, scene, CV_RANSAC);

	return H;
}


//用单应性过滤匹配
bool refineMatchesWithHomography(const std::vector<cv::KeyPoint>& queryKeypoints,
	const std::vector<cv::KeyPoint>& trainKeypoints,
	float reprojectionThreshold,
	std::vector<cv::DMatch>& matches//,
	//cv::Mat& homography
)
{
	cv::Mat homography;
	const int minNumberMatchesAllowed = 4;
	if (matches.size() < minNumberMatchesAllowed)
		return false;
	// 为 cv::findHomography 准备数据
	std::vector<cv::Point2f> queryPoints(matches.size());
	std::vector<cv::Point2f> trainPoints(matches.size());
	for (size_t i = 0; i < matches.size(); i++)
	{
		queryPoints[i] = queryKeypoints[matches[i].queryIdx].pt;
		trainPoints[i] = trainKeypoints[matches[i].trainIdx].pt;
	}
	// 查找单应矩阵并获取内点掩码
	std::vector<unsigned char> inliersMask(matches.size());
	homography = findHomography(queryPoints,
		trainPoints,
		CV_FM_RANSAC,
		reprojectionThreshold,
		inliersMask);
	std::vector<cv::DMatch> inliers;
	for (size_t i = 0; i < inliersMask.size(); i++)
	{
		if (inliersMask[i])
			inliers.push_back(matches[i]);
	}
	matches.swap(inliers);
	//Mat homoShow;
	//drawMatches(src,queryKeypoints,frameImg,trainKeypoints,matches,homoShow,Scalar::all(-1),CV_RGB(255,255,255),Mat(),2);
	//imshow("homoShow",homoShow);
	return matches.size() > minNumberMatchesAllowed;

}

//获得匹配点坐标函数
Point2f get_match_points(vector<KeyPoint>& keypoints1,vector<KeyPoint>& keypoints2, vector< DMatch > & matches, vector<Point2f>& points1,vector< Point2f>& points2)
{
	for (int i = 0; i < matches.size(); i++)
	{
		int index1 = matches.at(i).queryIdx;
		int index2 = matches.at(i).trainIdx;
		points1.push_back(keypoints1.at(index1).pt);
		points2.push_back(keypoints2.at(index2).pt);

	}

}



int main()
{
	/*	特征点的提取与匹配 	*/
	int num_images = 100;    //图像数量,可修改
	vector<string> image_names; // image_names[i]表示第i个图像的名称
	string name;
	ifstream f("D:\\list低分辨率.txt");
		assert(f.is_open());
		for(int i=0;i<num_images;i++)
		{
			getline(f, name);
			name = "D:\\低分辨率截图\\" + name;
			cout << name;
			image_names.push_back(name);
		}


	vector<vector<DMatch> > image_matches; // image_matches[i]表示第i幅图像和第i+1幅图像特征点匹配的结果
	 // 提取特征点

	vector<ImageFeatures> features(num_images);    //表示图像特征
	char temp[100];
	double ge[100];//100张图的特征点个数
	Point2f point;
	KeyPoint kp;
	float temp1 = 0, temp2 = 0;
	char ptsname[100];
	char descname[100];
	ifstream g("D:\\特征\\特征点个数.txt");//将100张图的特征点个数导入数组
	assert(g.is_open());
	for (int i = 1; i <= num_images; i++)
	{
		g >> ge[i - 1];
	}
	g.close();
	for (int i = 1; i <= num_images; i++)
	{
		sprintf(ptsname, "D:\\特征\\pts%d.txt", i); //格式化输出文件名
		ifstream infile(ptsname);
		assert(infile.is_open());   //若失败,则输出错误消息,并终止程序运行
		for (int a = 0; !infile.eof(); a++)
		{
			infile >> temp1 >> temp2;
			point.x = temp1;
			point.y = temp2;
			kp = KeyPoint(point, 1.f);
			features[i - 1].keypoints.push_back(kp);
		}
		infile.close();
		//infile.clear();

		sprintf(descname, "D:\\特征\\desc%d.txt", i); //格式化输出文件名
		ifstream des(descname);
		assert(des.is_open());   //若失败,则输出错误消息,并终止程序运行
		cout << ge[i - 1];
		features[i - 1].descriptors= Mat::zeros(ge[i - 1], 256, CV_32FC1);//同理features[0].descriptors
		for (int k = 0; k < ge[i - 1]; k++)
		{
			for (int j = 0; j < 256; j++)
			{
				des >> features[i - 1].descriptors.at<float>(k, j);
			}
		}

		des.close();
		//des.clear();
	}
	//match_features2(features.descriptor, image_matches); // 特征点匹配
	//gms_match_features(image_keypoints,img0.size(),image_matches);
	for (unsigned int i = 0; i < num_images - 1; i++)
	{
		cout << "正在匹配 " << i << " - " << i + 1 << endl;
		vector<DMatch> matches;
		//match_features1 (image_descriptor[i], image_descriptor[i + 1], matches);

		//使用暴力匹配器进行暴力匹配——BruteForceMatcher类的match()方法

        //opencv3.4使用
		//Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce");
		//matcher->match(features[i].descriptors, features[i + 1].descriptors, matches);

		BruteForceMatcher<L2<float> > matcher;//实例化暴力匹配器
		matcher.match(features[i].descriptors, features[i+1].descriptors, matches);

		cout << "有 " << matches.size() << " 个匹配点" << endl;

		image_matches.push_back(matches);
	}

cout<<"单应性过滤特征点"<<endl;
	//单应性过滤特征点
	for (unsigned int i = 0; i < image_matches.size(); i++)
	{
		refineMatchesWithHomography(features[i].keypoints, features[i+1].keypoints, 1.0, image_matches[i]);
	}
	//image_descriptor.swap(vector<Mat>());//匹配完清除内存
cout<<"narrow";
	Mat img0 = imread(image_names[0]);//读出一个图
	img0 = mynarrow(img0);//如果太大缩小一点。(>2400*1200的)


	/*显示匹配
	for (unsigned int i=0;i<image_matches.size ();i++)
	{
		Mat img1 = imread(image_names[i]);
		Mat img2 = imread(image_names[i+1]);//读出一个图

		Mat show = DrawInlier(img1, img2, features[i].keypoints, features[i+1].keypoints, image_matches[i], 1);
		imshow("匹配图", show);
		char wname[255];
		sprintf(wname,"met%d.jpg",i);
		imwrite(String(wname),show);


		waitKey();
	}
	*/
cout<<"position"<<endl;
	vector<cv::Point2f> position_da; // position_da[i]表示第i个图像在大图中的位置(左上角)
	Point2f position_s = Point2f(0, 0);
	position_da.push_back(position_s); // 第1个图像为原点


	for (unsigned int i = 0; i < image_matches.size(); i++)
	{

		if (image_matches[i].size() == 0)break;//如果无匹配点,则后面的就取消了

		//得到匹配点坐标
		vector<Point2f> points1, points2;
		get_match_points(features[i].keypoints, features[i + 1].keypoints, image_matches[i], points1, points2);



		unsigned int shi = image_matches[i].size();
		//shi = (shi > 10) ? 10 : shi;//只取前十个
		Point2f a;
		for (unsigned int j = 0; j < shi; j++)
		{
			a.x += points1[j].x - points2[j].x;
			a.y += points1[j].y - points2[j].y;
		}
		a.x /= shi; a.y /= shi;//取平均值
		cout << "两个相差:" << a << endl;

		//在大图的位置
		position_s.x = position_s.x + a.x;
		position_s.y = position_s.y + a.y;
		position_da.push_back(position_s);
		cout << "当前位置:" << position_s << endl;




	}
	//vector<vector<KeyPoint>>().swap(image_keypoints);//已经用不到了,清除容器并最小化它的容量


	cout<<"再计算最小,最大边界"<<endl;
	int xmin = 0, xmax = 0, ymin = 0, ymax = 0;
	for (unsigned int i = 1; i < position_da.size(); i++)
	{
		xmin = (position_da[i].x < xmin) ? position_da[i].x : xmin;
		xmax = (position_da[i].x > xmax) ? position_da[i].x : xmax;
		ymin = (position_da[i].y < ymin) ? position_da[i].y : ymin;
		ymax = (position_da[i].y > ymax) ? position_da[i].y : ymax;

	}
	cout<<"计算大图宽高"<<endl;
	int h = img0.rows + ymax - ymin;//拼接图行数(高度)
	int w = img0.cols + xmax - xmin;//拼接图列数(宽度)
	Mat stitch = Mat::zeros(h, w, CV_8UC3);

	cout<<"再把所有图像放到一个大图中(拼接)"<<endl;

	for (unsigned int i = 0; i < position_da.size(); i++)
	{
		img0 = imread(image_names[i]);//读出一个图//左图像

		img0 = mynarrow(img0);//如果太大缩小一点。
cout<<image_names[i];
		Mat roi2(stitch, Rect(position_da[i].x - xmin, position_da[i].y - ymin, img0.cols, img0.rows));
		img0(Range(0, img0.rows), Range(0, img0.cols)).copyTo(roi2);

	}


	imshow("拼接结果", stitch);
	imwrite("stitch.jpg", stitch);
	waitKey();
	return 0;
}