Python大数据处理库 PySpark实战四

  • ETL 实战
  • 实验数据来源
  • 数据加载
  • 观察资料
  • 选择、筛选与聚合
  • 机器学习实战
  • 实验数据来源
  • 数据加载
  • 统计描述
  • 清洗与变形
  • Pipeline
  • 逻辑回归预测
  • 决策树预测


ETL 实战

实验数据来源

数据加载

from pyspark.sql import SparkSession
from pyspark.sql.context import SQLContext
from pyspark.sql.functions import to_utc_timestamp

spark = SparkSession.builder.master("local[*]").appName("PySpark ETL").getOrCreate()
sc = spark.sparkContext
#############################################
#相对路径,文件包含标题行
df = spark.read.csv('hdfs://localhost:9000/ml-latest-small/ratings.csv',header=True)
#打印默认的字段类型信息
df.printSchema()
#打印前20条数据
df.show()
#打印总行数
print(df.count())

root
 |-- userId: string (nullable = true)
 |-- movieId: string (nullable = true)
 |-- rating: string (nullable = true)
 |-- timestamp: string (nullable = true)

+------+-------+------+---------+
|userId|movieId|rating|timestamp|
+------+-------+------+---------+
|     1|      1|   4.0|964982703|
|     1|      3|   4.0|964981247|
|     1|      6|   4.0|964982224|
|     1|     47|   5.0|964983815|
|     1|     50|   5.0|964982931|
|     1|     70|   3.0|964982400|
|     1|    101|   5.0|964980868|
|     1|    110|   4.0|964982176|
|     1|    151|   5.0|964984041|
|     1|    157|   5.0|964984100|
|     1|    163|   5.0|964983650|
|     1|    216|   5.0|964981208|
|     1|    223|   3.0|964980985|
|     1|    231|   5.0|964981179|
|     1|    235|   4.0|964980908|
|     1|    260|   5.0|964981680|
|     1|    296|   3.0|964982967|
|     1|    316|   3.0|964982310|
|     1|    333|   5.0|964981179|
|     1|    349|   4.0|964982563|
+------+-------+------+---------+
only showing top 20 rows

100836

但是我们发现读取文件后,用printSchema打印各个字段类型都是string,不满足业务的实际情况

df = spark.read.csv('hdfs://localhost:9000/ml-latest-small/ratings.csv',header=True,inferSchema=True)
df.printSchema()
root
 |-- userId: integer (nullable = true)
 |-- movieId: integer (nullable = true)
 |-- rating: double (nullable = true)
 |-- timestamp: integer (nullable = true) |-- timestamp: integer (nullable = true)

观察资料

# Matplotlib 绘制折线图
import matplotlib
import matplotlib.pyplot as plt
import numpy as np

#支持中文,否则乱码
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']
#准备数据
t = np.arange(0.0, 2.0, 0.01)
s = 1 + np.sin(2 * np.pi * t)
fig, ax = plt.subplots()
#设置窗口标题
fig.canvas.set_window_title('折线图示例')
#绘图,折线图
ax.plot(t, s)
#坐标轴设置
ax.set(xlabel='时间 (s)', ylabel='电压 (mV)',title='折线图')
ax.grid()
plt.show()

pyspark sparksession 参数列表 pyspark collect_set_sql

对rating.csv数据进行探究

df = spark.read.csv('hdfs://localhost:9000/ml-latest-small/ratings.csv',header=True,inferSchema=True)
df.show(10)
df.printSchema()
# 对rating列进行数据统计分析
df.select("rating").describe().show()
#打印资料的行数量和列数量
print(df.count(),len(df.columns))

#删除所有列的空值和NaN
dfNotNull=df.na.drop()
print(dfNotNull.count(),len(dfNotNull.columns))

#创建视图movie
df.createOrReplaceTempView("movie")
#spark sql
df2 = spark.sql("select count(*) as counter, rating from movie \
						group by rating order by rating asc")
df2.show()
##############################################
from matplotlib import pyplot as plt 
pdf = df2.toPandas()
x = pdf["rating"]
y = pdf["counter"]
plt.xlabel("rating")
plt.ylabel("counter")
plt.title("movie rating")
plt.bar(x,y)
#显示数值标签
for x1,y1 in zip(x,y):
  plt.text(x1, y1+0.05, '%.0f' %y1, ha='center', va= 'bottom',fontsize=11)
plt.show()


+------+-------+------+---------+
|userId|movieId|rating|timestamp|
+------+-------+------+---------+
|     1|      1|   4.0|964982703|
|     1|      3|   4.0|964981247|
|     1|      6|   4.0|964982224|
|     1|     47|   5.0|964983815|
|     1|     50|   5.0|964982931|
|     1|     70|   3.0|964982400|
|     1|    101|   5.0|964980868|
|     1|    110|   4.0|964982176|
|     1|    151|   5.0|964984041|
|     1|    157|   5.0|964984100|
+------+-------+------+---------+
only showing top 10 rows

root
 |-- userId: integer (nullable = true)
 |-- movieId: integer (nullable = true)
 |-- rating: double (nullable = true)
 |-- timestamp: integer (nullable = true)

+-------+------------------+
|summary|            rating|
+-------+------------------+
|  count|            100836|
|   mean| 3.501556983616962|
| stddev|1.0425292390606342|
|    min|               0.5|
|    max|               5.0|
+-------+------------------+

100836 4
100836 4
+-------+------+
|counter|rating|
+-------+------+
|   1370|   0.5|
|   2811|   1.0|
|   1791|   1.5|
|   7551|   2.0|
|   5550|   2.5|
|  20047|   3.0|
|  13136|   3.5|
|  26818|   4.0|
|   8551|   4.5|
|  13211|   5.0|
+-------+------+

pyspark sparksession 参数列表 pyspark collect_set_sql_02

选择、筛选与聚合

  • 转换时间
  • UNIX_TIMESTAMP:是把时间字段转化为整型,需要注意的是有些数据库需要指明时间字段类型,比如MySQL里是可以直接UNIX_TIMESTAMP(‘20200223’),而某些大数据平台需要UNIX_TIMESTAMP(‘20200223’,‘yyyyMMdd’)
  • FROM_UNIXTIME:从整型里把时间整型进行破解成想要的时间格式,使用时可指定格式
from pyspark.sql.functions import from_unixtime
df = spark.read.csv('hdfs://localhost:9000/ml-latest-small/ratings.csv',header=True,inferSchema=True)
df = df.withColumn("rating", df.rating.cast("double"))
#新增一列date
df = df.withColumn("date",from_unixtime(df.timestamp.cast("bigint"), 'yyyy-MM-dd'))
df = df.withColumn("date",df.date.cast("date"))
#删除timestamp列
df = df.drop("timestamp")
df.show(10)

+------+-------+------+----------+
|userId|movieId|rating|      date|
+------+-------+------+----------+
|     1|      1|   4.0|2000-07-31|
|     1|      3|   4.0|2000-07-31|
|     1|      6|   4.0|2000-07-31|
|     1|     47|   5.0|2000-07-31|
|     1|     50|   5.0|2000-07-31|
|     1|     70|   3.0|2000-07-31|
|     1|    101|   5.0|2000-07-31|
|     1|    110|   4.0|2000-07-31|
|     1|    151|   5.0|2000-07-31|
|     1|    157|   5.0|2000-07-31|
+------+-------+------+----------+
  • Inner Join 电影表
from pyspark.sql.types import BooleanType
from pyspark.sql.functions import udf

df2 = spark.read.csv('hdfs://localhost:9000/ml-latest-small/movies.csv',header=True)
df3 = df.join(df2, df.movieId == df2.movieId,"inner").select("userId",df.movieId,"title","date","rating")
#定义普通的python函数
def isLike(v):
    if v > 4:
        return True
    else:
        return False
#创建udf函数
udf_isLike=udf(isLike,BooleanType())
df3 = df3.withColumn("isLike",udf_isLike(df3["rating"]))
df3.show()

+------+-------+--------------------+----------+------+------+
|userId|movieId|               title|      date|rating|isLike|
+------+-------+--------------------+----------+------+------+
|     1|      1|    Toy Story (1995)|2000-07-31|   4.0| false|
|     1|      3|Grumpier Old Men ...|2000-07-31|   4.0| false|
|     1|      6|         Heat (1995)|2000-07-31|   4.0| false|
|     1|     47|Seven (a.k.a. Se7...|2000-07-31|   5.0|  true|
|     1|     50|Usual Suspects, T...|2000-07-31|   5.0|  true|
|     1|     70|From Dusk Till Da...|2000-07-31|   3.0| false|
|     1|    101|Bottle Rocket (1996)|2000-07-31|   5.0|  true|
|     1|    110|   Braveheart (1995)|2000-07-31|   4.0| false|
|     1|    151|      Rob Roy (1995)|2000-07-31|   5.0|  true|
|     1|    157|Canadian Bacon (1...|2000-07-31|   5.0|  true|
+------+-------+--------------------+----------+------+------+
  • 定义Pandas UDF函数,对象聚合 要求Pyspark2.3 以上
from pyspark.sql.functions import pandas_udf, udf

#定义pandas udf函数,用于GroupedData
@pandas_udf("string", PandasUDFType.GROUPED_AGG) 
def fmerge(v):
    return ','.join(v)

df5 = spark.read.csv('hdfs://localhost:9000/ml-latest-small/tags.csv',header=True)
df5 = df5.drop("timestamp")
#groupBy聚合
df7 = df5.groupBy(["userId","movieId"]).agg(fmerge(df5["tag"]))
df7 = df7.withColumnRenamed("fmerge(tag)","tags")
#select选择
df6 = df3.join(df7,(df3.movieId == df7.movieId) & (df3.userId == df7.userId))\
        .select(df3.userId,df3.movieId,"title","date","tags","rating","isLike") \
        .orderBy(["date"], ascending=[0])
#filter筛选
df6 = df6.filter(df.date>'2015-10-25')
df6.show(20)
  • 存储数据
#存储数据text格式
f6.rdd.coalesce(1).saveAsTextFile("movie-out")
#存储数据CSV格式 
df6.coalesce(1).write.format("csv").option("header","true").save("movie-out-csv")
#parquet格式
df6.write.format('parquet').save("movie-out-parquet")
#json格式
df6.coalesce(1).write.format("json").save("movie-out-json")
#存储到数据库
#需要把对应的数据库驱动安装到目录jars下
#save to file
db_url = "jdbc:sqlserver://localhost:1433;databaseName=bg_data;user=root;password=root"
db_table = "movie"
#overwrite会重新生成表 append
df6.write.mode("overwrite").jdbc(db_url, db_table)

机器学习实战

实验数据来源

数据加载

from pyspark.sql import SparkSession
from pyspark.sql.context import SQLContext
from pyspark.sql.functions import to_utc_timestamp

spark = SparkSession.builder.master("local[*]").appName("PySpark AI").getOrCreate()
sc = spark.sparkContext

print("Titanic train.csv Info")
df_train = spark.read.csv('hdfs://localhost:9000/titanic/train.csv',header=True,inferSchema=True).cache()
df_train.printSchema()
print(df_train.count(),len(df_train.columns))
df_train.show()
print("#############################################")
print("Titanic test.csv Info")
df_test = spark.read.csv('hdfs://localhost:9000/titanic/test.csv',header=True,inferSchema=True).cache()
df_test.printSchema()
print(df_test.count(),len(df_test.columns))
df_test.show()

Titanic train.csv Info
root
 |-- PassengerId: integer (nullable = true)
 |-- Survived: integer (nullable = true)
 |-- Pclass: integer (nullable = true)
 |-- Name: string (nullable = true)
 |-- Sex: string (nullable = true)
 |-- Age: double (nullable = true)
 |-- SibSp: integer (nullable = true)
 |-- Parch: integer (nullable = true)
 |-- Ticket: string (nullable = true)
 |-- Fare: double (nullable = true)
 |-- Cabin: string (nullable = true)
 |-- Embarked: string (nullable = true)

891 12
+-----------+--------+------+--------------------+------+----+-----+-----+----------------+-------+-----+--------+
|PassengerId|Survived|Pclass|                Name|   Sex| Age|SibSp|Parch|          Ticket|   Fare|Cabin|Embarked|
+-----------+--------+------+--------------------+------+----+-----+-----+----------------+-------+-----+--------+
|          1|       0|     3|Braund, Mr. Owen ...|  male|22.0|    1|    0|       A/5 21171|   7.25| null|       S|
|          2|       1|     1|Cumings, Mrs. Joh...|female|38.0|    1|    0|        PC 17599|71.2833|  C85|       C|
|          3|       1|     3|Heikkinen, Miss. ...|female|26.0|    0|    0|STON/O2. 3101282|  7.925| null|       S|
|          4|       1|     1|Futrelle, Mrs. Ja...|female|35.0|    1|    0|          113803|   53.1| C123|       S|
|          5|       0|     3|Allen, Mr. Willia...|  male|35.0|    0|    0|          373450|   8.05| null|       S|
|          6|       0|     3|    Moran, Mr. James|  male|null|    0|    0|          330877| 8.4583| null|       Q|
|          7|       0|     1|McCarthy, Mr. Tim...|  male|54.0|    0|    0|           17463|51.8625|  E46|       S|
|          8|       0|     3|Palsson, Master. ...|  male| 2.0|    3|    1|          349909| 21.075| null|       S|
|          9|       1|     3|Johnson, Mrs. Osc...|female|27.0|    0|    2|          347742|11.1333| null|       S|
|         10|       1|     2|Nasser, Mrs. Nich...|female|14.0|    1|    0|          237736|30.0708| null|       C|
|         11|       1|     3|Sandstrom, Miss. ...|female| 4.0|    1|    1|         PP 9549|   16.7|   G6|       S|
|         12|       1|     1|Bonnell, Miss. El...|female|58.0|    0|    0|          113783|  26.55| C103|       S|
|         13|       0|     3|Saundercock, Mr. ...|  male|20.0|    0|    0|       A/5. 2151|   8.05| null|       S|
|         14|       0|     3|Andersson, Mr. An...|  male|39.0|    1|    5|          347082| 31.275| null|       S|
|         15|       0|     3|Vestrom, Miss. Hu...|female|14.0|    0|    0|          350406| 7.8542| null|       S|
|         16|       1|     2|Hewlett, Mrs. (Ma...|female|55.0|    0|    0|          248706|   16.0| null|       S|
|         17|       0|     3|Rice, Master. Eugene|  male| 2.0|    4|    1|          382652| 29.125| null|       Q|
|         18|       1|     2|Williams, Mr. Cha...|  male|null|    0|    0|          244373|   13.0| null|       S|
|         19|       0|     3|Vander Planke, Mr...|female|31.0|    1|    0|          345763|   18.0| null|       S|
|         20|       1|     3|Masselmani, Mrs. ...|female|null|    0|    0|            2649|  7.225| null|       C|
+-----------+--------+------+--------------------+------+----+-----+-----+----------------+-------+-----+--------+
only showing top 20 rows

#############################################
Titanic test.csv Info
root
 |-- PassengerId: integer (nullable = true)
 |-- Pclass: integer (nullable = true)
 |-- Name: string (nullable = true)
 |-- Sex: string (nullable = true)
 |-- Age: double (nullable = true)
 |-- SibSp: integer (nullable = true)
 |-- Parch: integer (nullable = true)
 |-- Ticket: string (nullable = true)
 |-- Fare: double (nullable = true)
 |-- Cabin: string (nullable = true)
 |-- Embarked: string (nullable = true)

418 11
+-----------+------+--------------------+------+----+-----+-----+----------------+-------+-----+--------+
|PassengerId|Pclass|                Name|   Sex| Age|SibSp|Parch|          Ticket|   Fare|Cabin|Embarked|
+-----------+------+--------------------+------+----+-----+-----+----------------+-------+-----+--------+
|        892|     3|    Kelly, Mr. James|  male|34.5|    0|    0|          330911| 7.8292| null|       Q|
|        893|     3|Wilkes, Mrs. Jame...|female|47.0|    1|    0|          363272|    7.0| null|       S|
|        894|     2|Myles, Mr. Thomas...|  male|62.0|    0|    0|          240276| 9.6875| null|       Q|
|        895|     3|    Wirz, Mr. Albert|  male|27.0|    0|    0|          315154| 8.6625| null|       S|
|        896|     3|Hirvonen, Mrs. Al...|female|22.0|    1|    1|         3101298|12.2875| null|       S|
|        897|     3|Svensson, Mr. Joh...|  male|14.0|    0|    0|            7538|  9.225| null|       S|
|        898|     3|Connolly, Miss. Kate|female|30.0|    0|    0|          330972| 7.6292| null|       Q|
|        899|     2|Caldwell, Mr. Alb...|  male|26.0|    1|    1|          248738|   29.0| null|       S|
|        900|     3|Abrahim, Mrs. Jos...|female|18.0|    0|    0|            2657| 7.2292| null|       C|
|        901|     3|Davies, Mr. John ...|  male|21.0|    2|    0|       A/4 48871|  24.15| null|       S|
|        902|     3|    Ilieff, Mr. Ylio|  male|null|    0|    0|          349220| 7.8958| null|       S|
|        903|     1|Jones, Mr. Charle...|  male|46.0|    0|    0|             694|   26.0| null|       S|
|        904|     1|Snyder, Mrs. John...|female|23.0|    1|    0|           21228|82.2667|  B45|       S|
|        905|     2|Howard, Mr. Benjamin|  male|63.0|    1|    0|           24065|   26.0| null|       S|
|        906|     1|Chaffee, Mrs. Her...|female|47.0|    1|    0|     W.E.P. 5734| 61.175|  E31|       S|
|        907|     2|del Carlo, Mrs. S...|female|24.0|    1|    0|   SC/PARIS 2167|27.7208| null|       C|
|        908|     2|   Keane, Mr. Daniel|  male|35.0|    0|    0|          233734|  12.35| null|       Q|
|        909|     3|   Assaf, Mr. Gerios|  male|21.0|    0|    0|            2692|  7.225| null|       C|
|        910|     3|Ilmakangas, Miss....|female|27.0|    1|    0|STON/O2. 3101270|  7.925| null|       S|
|        911|     3|"Assaf Khalil, Mr...|female|45.0|    0|    0|            2696|  7.225| null|       C|
+-----------+------+--------------------+------+----+-----+-----+----------------+-------+-----+--------+
only showing top 20 rows

统计描述

df_train = spark.read.csv('hdfs://localhost:9000/titanic/train.csv',header=True,inferSchema=True).cache()
#计算基本的统计描述信息
df_train.describe("Age","Pclass","SibSp","Parch").show()
df_train.describe("Sex","Cabin","Embarked","Fare","Survived").show()

pdf = df_train.groupBy('sex','Survived') \
     .agg({'PassengerId': 'count'}) \
     .withColumnRenamed("count(PassengerId)","count") \
     .orderBy("sex") \
     .toPandas()
print(pdf)

pdf = df_train.groupBy('Pclass','Survived') \
     .agg({'PassengerId': 'count'}) \
     .withColumnRenamed("count(PassengerId)","count") \
     .orderBy("Pclass") \
     .toPandas()
print(pdf)


pdf = df_train.groupBy('Parch','Survived') \
     .agg({'PassengerId': 'count'}) \
     .withColumnRenamed("count(PassengerId)","count") \
     .orderBy("Parch") \
     .toPandas()
print(pdf)

pdf = df_train.groupBy('SibSp','Survived') \
     .agg({'PassengerId': 'count'}) \
     .withColumnRenamed("count(PassengerId)","count") \
     .orderBy("SibSp") \
     .toPandas()
print(pdf)

+-------+------------------+------------------+------------------+-------------------+
|summary|               Age|            Pclass|             SibSp|              Parch|
+-------+------------------+------------------+------------------+-------------------+
|  count|               714|               891|               891|                891|
|   mean| 29.69911764705882| 2.308641975308642|0.5230078563411896|0.38159371492704824|
| stddev|14.526497332334035|0.8360712409770491|1.1027434322934315| 0.8060572211299488|
|    min|              0.42|                 1|                 0|                  0|
|    max|              80.0|                 3|                 8|                  6|
+-------+------------------+------------------+------------------+-------------------+

+-------+------+-----+--------+-----------------+-------------------+
|summary|   Sex|Cabin|Embarked|             Fare|           Survived|
+-------+------+-----+--------+-----------------+-------------------+
|  count|   891|  204|     889|              891|                891|
|   mean|  null| null|    null| 32.2042079685746| 0.3838383838383838|
| stddev|  null| null|    null|49.69342859718089|0.48659245426485753|
|    min|female|  A10|       C|              0.0|                  0|
|    max|  male|    T|       S|         512.3292|                  1|
+-------+------+-----+--------+-----------------+-------------------+

      sex  Survived  count
0  female         1    233
1  female         0     81
2    male         0    468
3    male         1    109

   Pclass  Survived  count
0       1         0     80
1       1         1    136
2       2         1     87
3       2         0     97
4       3         1    119
5       3         0    372
    Parch  Survived  count
0       0         0    445
1       0         1    233
2       1         0     53
3       1         1     65
4       2         1     40
5       2         0     40
6       3         1      3
7       3         0      2
8       4         0      4
9       5         0      4
10      5         1      1
11      6         0      1
    SibSp  Survived  count
0       0         0    398
1       0         1    210
2       1         0     97
3       1         1    112
4       2         1     13
5       2         0     15
6       3         1      4
7       3         0     12
8       4         0     15
9       4         1      3
10      5         0      5
11      8         0      7

清洗与变形

from pyspark.ml.feature import StringIndexer, VectorAssembler, VectorIndexer

df_train = spark.read.csv('hdfs://localhost:9000/titanic/train.csv',header=True,inferSchema=True).cache()
#用平均值29.699替换缺失值
df_train = df_train.fillna({'Age': round(29.699,2)})
#用登录最多的港口'S'替换缺失值
df_train = df_train.fillna({'Embarked': 'S'})
#df_train = df_train.fillna({'Cabin': 'unknown'})
#删除列
df_train = df_train.drop("Cabin")
df_train = df_train.drop("Ticket")

#StringIndexer转换器把一列标签类型的特征数值化编码
labelIndexer = StringIndexer(inputCol="Embarked", outputCol="iEmbarked")
model = labelIndexer.fit(df_train)
df_train = model.transform(df_train)

labelIndexer = StringIndexer(inputCol="Sex", outputCol="iSex")
model = labelIndexer.fit(df_train)
df_train = model.transform(df_train)

df_train.show()
# 特征选择
features = ['Pclass', 'iSex', 'Age', 'SibSp', 'Parch', 'Fare', 'iEmbarked','Survived']
train_features = df_train[features]
train_features.show()
# train_labels = df_train['Survived']
# train_labels.show()

# VectorAssembler将多个列转换成向量
df_assembler = VectorAssembler(inputCols=['Pclass', 'iSex', 'Age', 'SibSp', 'Parch', 'Fare', 'iEmbarked'], outputCol="features")
df = df_assembler.transform(train_features)

#df["features"].show()-> TypeError: 'Column' object is not callable
df["features",].show()
df["Survived",].show()


+-----------+--------+------+--------------------+------+----+-----+-----+-------+--------+---------+----+
|PassengerId|Survived|Pclass|                Name|   Sex| Age|SibSp|Parch|   Fare|Embarked|iEmbarked|iSex|
+-----------+--------+------+--------------------+------+----+-----+-----+-------+--------+---------+----+
|          1|       0|     3|Braund, Mr. Owen ...|  male|22.0|    1|    0|   7.25|       S|      0.0| 0.0|
|          2|       1|     1|Cumings, Mrs. Joh...|female|38.0|    1|    0|71.2833|       C|      1.0| 1.0|
|          3|       1|     3|Heikkinen, Miss. ...|female|26.0|    0|    0|  7.925|       S|      0.0| 1.0|
|          4|       1|     1|Futrelle, Mrs. Ja...|female|35.0|    1|    0|   53.1|       S|      0.0| 1.0|
|          5|       0|     3|Allen, Mr. Willia...|  male|35.0|    0|    0|   8.05|       S|      0.0| 0.0|
|          6|       0|     3|    Moran, Mr. James|  male|30.0|    0|    0| 8.4583|       Q|      2.0| 0.0|
|          7|       0|     1|McCarthy, Mr. Tim...|  male|54.0|    0|    0|51.8625|       S|      0.0| 0.0|
|          8|       0|     3|Palsson, Master. ...|  male| 2.0|    3|    1| 21.075|       S|      0.0| 0.0|
|          9|       1|     3|Johnson, Mrs. Osc...|female|27.0|    0|    2|11.1333|       S|      0.0| 1.0|
|         10|       1|     2|Nasser, Mrs. Nich...|female|14.0|    1|    0|30.0708|       C|      1.0| 1.0|
|         11|       1|     3|Sandstrom, Miss. ...|female| 4.0|    1|    1|   16.7|       S|      0.0| 1.0|
|         12|       1|     1|Bonnell, Miss. El...|female|58.0|    0|    0|  26.55|       S|      0.0| 1.0|
|         13|       0|     3|Saundercock, Mr. ...|  male|20.0|    0|    0|   8.05|       S|      0.0| 0.0|
|         14|       0|     3|Andersson, Mr. An...|  male|39.0|    1|    5| 31.275|       S|      0.0| 0.0|
|         15|       0|     3|Vestrom, Miss. Hu...|female|14.0|    0|    0| 7.8542|       S|      0.0| 1.0|
|         16|       1|     2|Hewlett, Mrs. (Ma...|female|55.0|    0|    0|   16.0|       S|      0.0| 1.0|
|         17|       0|     3|Rice, Master. Eugene|  male| 2.0|    4|    1| 29.125|       Q|      2.0| 0.0|
|         18|       1|     2|Williams, Mr. Cha...|  male|30.0|    0|    0|   13.0|       S|      0.0| 0.0|
|         19|       0|     3|Vander Planke, Mr...|female|31.0|    1|    0|   18.0|       S|      0.0| 1.0|
|         20|       1|     3|Masselmani, Mrs. ...|female|30.0|    0|    0|  7.225|       C|      1.0| 1.0|
+-----------+--------+------+--------------------+------+----+-----+-----+-------+--------+---------+----+
only showing top 20 rows

+------+----+----+-----+-----+-------+---------+--------+
|Pclass|iSex| Age|SibSp|Parch|   Fare|iEmbarked|Survived|
+------+----+----+-----+-----+-------+---------+--------+
|     3| 0.0|22.0|    1|    0|   7.25|      0.0|       0|
|     1| 1.0|38.0|    1|    0|71.2833|      1.0|       1|
|     3| 1.0|26.0|    0|    0|  7.925|      0.0|       1|
|     1| 1.0|35.0|    1|    0|   53.1|      0.0|       1|
|     3| 0.0|35.0|    0|    0|   8.05|      0.0|       0|
|     3| 0.0|30.0|    0|    0| 8.4583|      2.0|       0|
|     1| 0.0|54.0|    0|    0|51.8625|      0.0|       0|
|     3| 0.0| 2.0|    3|    1| 21.075|      0.0|       0|
|     3| 1.0|27.0|    0|    2|11.1333|      0.0|       1|
|     2| 1.0|14.0|    1|    0|30.0708|      1.0|       1|
|     3| 1.0| 4.0|    1|    1|   16.7|      0.0|       1|
|     1| 1.0|58.0|    0|    0|  26.55|      0.0|       1|
|     3| 0.0|20.0|    0|    0|   8.05|      0.0|       0|
|     3| 0.0|39.0|    1|    5| 31.275|      0.0|       0|
|     3| 1.0|14.0|    0|    0| 7.8542|      0.0|       0|
|     2| 1.0|55.0|    0|    0|   16.0|      0.0|       1|
|     3| 0.0| 2.0|    4|    1| 29.125|      2.0|       0|
|     2| 0.0|30.0|    0|    0|   13.0|      0.0|       1|
|     3| 1.0|31.0|    1|    0|   18.0|      0.0|       0|
|     3| 1.0|30.0|    0|    0|  7.225|      1.0|       1|
+------+----+----+-----+-----+-------+---------+--------+
only showing top 20 rows

+--------------------+
|            features|
+--------------------+
|[3.0,0.0,22.0,1.0...|
|[1.0,1.0,38.0,1.0...|
|[3.0,1.0,26.0,0.0...|
|[1.0,1.0,35.0,1.0...|
|(7,[0,2,5],[3.0,3...|
|[3.0,0.0,30.0,0.0...|
|(7,[0,2,5],[1.0,5...|
|[3.0,0.0,2.0,3.0,...|
|[3.0,1.0,27.0,0.0...|
|[2.0,1.0,14.0,1.0...|
|[3.0,1.0,4.0,1.0,...|
|[1.0,1.0,58.0,0.0...|
|(7,[0,2,5],[3.0,2...|
|[3.0,0.0,39.0,1.0...|
|[3.0,1.0,14.0,0.0...|
|[2.0,1.0,55.0,0.0...|
|[3.0,0.0,2.0,4.0,...|
|(7,[0,2,5],[2.0,3...|
|[3.0,1.0,31.0,1.0...|
|[3.0,1.0,30.0,0.0...|
+--------------------+
only showing top 20 rows

+--------+
|Survived|
+--------+
|       0|
|       1|
|       1|
|       1|
|       0|
|       0|
|       0|
|       0|
|       1|
|       1|
|       1|
|       1|
|       0|
|       0|
|       0|
|       1|
|       0|
|       1|
|       0|
|       1|
+--------+

Pipeline

  • 一个pipeline被指定成为一个阶段序列,
from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.feature import HashingTF, Tokenizer
training = spark.createDataFrame([
    (0, "Hello PySpark", 1.0),
    (1, "Using Flink", 0.0),
    (2, "PySpark 3.0", 1.0),
    (3, "Test MySQL", 0.0)
], ["id", "text", "label"])
# pipeline 三个阶段: tokenizer -> hashingTF -> logR.
tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")
logR = LogisticRegression(maxIter=10, regParam=0.001)
pipeline = Pipeline(stages=[tokenizer, hashingTF, logR])
#训练数据上进行pipeline fit操作,产生一个model
model = pipeline.fit(training)
#############################################
#测试集
test = spark.createDataFrame([
    (4, "PySpark Pipeline"),
    (5, "pipeline"),
    (6, "PySpark python"),
    (7, "julia c#")
], ["id", "text"])

#model执行transform
prediction = model.transform(test)
#预测
selected = prediction.select("id", "text", "probability", "prediction")
for row in selected.collect():
    tid, text, prob, prediction = row
    print("(%d, %s) --> prediction=%f,prob=%s" \
    % (tid, text,  prediction,str(prob)))
    
 
(4, PySpark Pipeline) --> prediction=1.000000,prob=[0.029796174862816768,0.9702038251371833]
(5, pipeline) --> prediction=0.000000,prob=[0.56611226449896,0.43388773550104]
(6, PySpark python) --> prediction=1.000000,prob=[0.029796174862816768,0.9702038251371833]
(7, julia c#) --> prediction=0.000000,prob=[0.56611226449896,0.43388773550104]

逻辑回归预测

  • 训练
from pyspark.sql import SparkSession
from pyspark.ml.feature import StringIndexer, VectorAssembler
from pyspark.ml.classification import LogisticRegression
import matplotlib.pyplot as plt

spark = SparkSession.builder.master("local[*]").appName("PySpark ML").getOrCreate()
sc = spark.sparkContext
#############################################

df_train = spark.read.csv('hdfs://localhost:9000/titanic/train.csv',header=True,inferSchema=True).cache()

df_train = df_train.fillna({'Age': round(29.699,0)})
df_train = df_train.fillna({'Fare': 36.0})
df_train = df_train.fillna({'Embarked': 'S'})
df_train = df_train.drop("Cabin")
df_train = df_train.drop("Ticket")
labelIndexer = StringIndexer(inputCol="Embarked", outputCol="iEmbarked")
model = labelIndexer.fit(df_train)
df_train = model.transform(df_train)
labelIndexer = StringIndexer(inputCol="Sex", outputCol="iSex")
model = labelIndexer.fit(df_train)
df_train = model.transform(df_train)
features = ['Pclass', 'iSex', 'Age', 'SibSp', 'Parch', 'Fare', 'iEmbarked','Survived']
train_features = df_train[features]
df_assembler = VectorAssembler(inputCols=['Pclass', 'iSex', 'Age', 'SibSp','Parch', 'Fare', 'iEmbarked'], outputCol="features")
train = df_assembler.transform(train_features)


#LogisticRegression模型
lg = LogisticRegression(labelCol='Survived')
lgModel = lg.fit(train)
#保存模型
lgModel.write().overwrite().save("hdfs://localhost:9000/model/logistic-titanic")
print("save model to hdfs://localhost:9000/model/logistic-titanic")


print("areaUnderROC: " + str(lgModel.summary.areaUnderROC))
#ROC curve is a plot of FPR against TPR

plt.figure(figsize=(5,5))
plt.plot([0, 1], [0, 1], 'r--')
plt.plot(lgModel.summary.roc.select('FPR').collect(),
         lgModel.summary.roc.select('TPR').collect())
plt.xlabel('FPR')
plt.ylabel('TPR')
plt.show()

save model to hdfs://localhost:9000/model/logistic-titanic
areaUnderROC: 0.8569355233864868


  • 预测
from pyspark.ml.classification import LogisticRegressionModel

df_test = spark.read.csv('hdfs://localhost:9000/titanic/test.csv',header=True,inferSchema=True).cache()
df_test = df_test.fillna({'Age': round(29.699,0)})
df_test = df_test.fillna({'Embarked': 'S'})
#有一个null
df_test = df_test.fillna({'Fare': 36.0})
df_test = df_test.drop("Cabin")
df_test = df_test.drop("Ticket")
#新增Survived列,默认值为0
df_test = df_test.withColumn("Survived",0 * df_test["Age"])

labelIndexer = StringIndexer(inputCol="Embarked", outputCol="iEmbarked")
model = labelIndexer.fit(df_test)
df_test = model.transform(df_test)
labelIndexer = StringIndexer(inputCol="Sex", outputCol="iSex")
model = labelIndexer.fit(df_test)
df_test = model.transform(df_test)
features = ['Pclass', 'iSex', 'Age', 'SibSp', 'Parch', 'Fare', 'iEmbarked','Survived']
test_features = df_test[features]
df_assembler = VectorAssembler(inputCols=['Pclass', 'iSex', 'Age', 'SibSp', 'Parch','Fare', 'iEmbarked'], outputCol="features")
test = df_assembler.transform(test_features)

lgModel = LogisticRegressionModel.load("hdfs://localhost:9000/model/logistic-titanic")
testSummary =lgModel.evaluate(test)

results=testSummary.predictions
results["features","rawPrediction","probability","prediction"].show()

+--------------------+--------------------+--------------------+----------+
|            features|       rawPrediction|         probability|prediction|
+--------------------+--------------------+--------------------+----------+
|[3.0,0.0,34.5,0.0...|[1.99328605097899...|[0.88009035220072...|       0.0|
|[3.0,1.0,47.0,1.0...|[0.63374031844971...|[0.65333708360849...|       0.0|
|[2.0,0.0,62.0,0.0...|[1.97058477648159...|[0.87767391006101...|       0.0|
|(7,[0,2,5],[3.0,2...|[2.21170839644084...|[0.90129601257823...|       0.0|
|[3.0,1.0,22.0,1.0...|[-0.2919725495559...|[0.42752102300610...|       1.0|
|(7,[0,2,5],[3.0,1...|[1.68822917787023...|[0.84399113755992...|       0.0|
|[3.0,1.0,30.0,0.0...|[-0.9032166903750...|[0.28838991532794...|       1.0|
|[2.0,0.0,26.0,1.0...|[1.42490075002778...|[0.80610554993708...|       0.0|
|[3.0,1.0,18.0,0.0...|[-1.1236436862496...|[0.24533604281752...|       1.0|
|[3.0,0.0,21.0,2.0...|[2.59895227540995...|[0.93079411943702...|       0.0|
|(7,[0,2,5],[3.0,3...|[2.33390585204715...|[0.91164644844255...|       0.0|
|(7,[0,2,5],[1.0,4...|[0.69025711721974...|[0.66602412131662...|       0.0|
|[1.0,1.0,23.0,1.0...|[-2.7419887292668...|[0.06054069440361...|       1.0|
|[2.0,0.0,63.0,1.0...|[2.82767950026722...|[0.94415337330052...|       0.0|
|[1.0,1.0,47.0,1.0...|[-1.7316563679495...|[0.15037583472736...|       1.0|
|[2.0,1.0,24.0,1.0...|[-1.7197655536498...|[0.15190136429145...|       1.0|
|[2.0,0.0,35.0,0.0...|[0.88008689342827...|[0.70684022722317...|       0.0|
|[3.0,0.0,21.0,0.0...|[1.71304684487762...|[0.84723105652294...|       0.0|
|[3.0,1.0,27.0,1.0...|[-0.1717428611873...|[0.45716950894284...|       1.0|
|[3.0,1.0,45.0,0.0...|[-0.0389664987514...|[0.49025960775551...|       1.0|
+--------------------+--------------------+--------------------+----------+

决策树预测

from pyspark.ml.classification import DecisionTreeClassifier
#DecisionTree模型
dtree = DecisionTreeClassifier(labelCol="Survived", featuresCol="features")
treeModel = dtree.fit(train)
#打印treeModel
print(treeModel.toDebugString)
#对训练数据进行预测
dt_predictions = treeModel.transform(train)
dt_predictions.select("prediction", "Survived", "features").show()

from pyspark.ml.evaluation import MulticlassClassificationEvaluator
multi_evaluator = MulticlassClassificationEvaluator(labelCol = 'Survived', metricName = 'accuracy')
print('Decision Tree Accu:', multi_evaluator.evaluate(dt_predictions))


#查看树信息
DecisionTreeClassificationModel (uid=DecisionTreeClassifier_43ab8b3b232f4c305402) of depth 5 with 49 nodes
  If (feature 1 in {0.0})
   If (feature 2 <= 3.0)
    If (feature 3 <= 2.0)
     Predict: 1.0
    Else (feature 3 > 2.0)
     If (feature 4 <= 1.0)
      Predict: 0.0
     Else (feature 4 > 1.0)
      If (feature 3 <= 4.0)
       Predict: 1.0
      Else (feature 3 > 4.0)
       Predict: 0.0
       
      ...
      
+----------+--------+--------------------+
|prediction|Survived|            features|
+----------+--------+--------------------+
|       0.0|       0|[3.0,0.0,22.0,1.0...|
|       1.0|       1|[1.0,1.0,38.0,1.0...|
|       1.0|       1|[3.0,1.0,26.0,0.0...|
|       1.0|       1|[1.0,1.0,35.0,1.0...|
|       0.0|       0|(7,[0,2,5],[3.0,3...|
|       0.0|       0|[3.0,0.0,30.0,0.0...|
|       0.0|       0|(7,[0,2,5],[1.0,5...|
|       0.0|       0|[3.0,0.0,2.0,3.0,...|
|       1.0|       1|[3.0,1.0,27.0,0.0...|
|       1.0|       1|[2.0,1.0,14.0,1.0...|
|       1.0|       1|[3.0,1.0,4.0,1.0,...|
|       1.0|       1|[1.0,1.0,58.0,0.0...|
|       0.0|       0|(7,[0,2,5],[3.0,2...|
|       0.0|       0|[3.0,0.0,39.0,1.0...|
|       1.0|       0|[3.0,1.0,14.0,0.0...|
|       1.0|       1|[2.0,1.0,55.0,0.0...|
|       0.0|       0|[3.0,0.0,2.0,4.0,...|
|       0.0|       1|(7,[0,2,5],[2.0,3...|
|       1.0|       0|[3.0,1.0,31.0,1.0...|
|       1.0|       1|[3.0,1.0,30.0,0.0...|
+----------+--------+--------------------+
only showing top 20 rows

Decision Tree Accu: 0.8417508417508418