类networkclient为consumer和producer所共用

network层的分层架构

下图展示了从最上层的KafkaProducer到最底层的Java NIO的构建层次关系:
图中淡紫色的方框表示接口或者抽象类,白色方框是具体实现。

整个架构图也体现了“面向接口编程”的思想:最底层Java NIO往上层全部以接口形式暴露,上面的3层,也都定义了相应的接口,逐层往上暴露。

接口的实例化(包括KafkaClient, Selectable, ChannelBuilder),也都在最外层的容器类KafkaProducer的构造函数中完成,KafkaProducer也就充当了一个“工厂”的角色,装配所有这些底层组件。

kafka 客户端配置账号密码_结果集

network层组件与NIO组件的映射关系

从上图也可以看出:
KakfaChannel基本是对SocketChannel的封装,只是这个中间多个一个间接层:TransportLayer,为了封装普通和加密的Channel;

Send/NetworkReceive是对ByteBuffer的封装,表示一次请求的数据包;

Kafka的Selector封装了NIO的Selector,内含一个NIO Selector对象。

Kafka Selector实现思路

1.从上图可以看出, Selector内部包含一个Map, 也就是它维护了所有连接的连接池。这些KafkaChannel都由ChannelBuilder接口创建。

    private final Map<String, KafkaChannel> channels;

2.所有的io操作:connect, read, write其实都是在poll这1个函数里面完成的。具体什么意思呢?

NetworkClient的send()函数,调用了selector.send(Send send), 但这个时候数据并没有真的发送出去,只是暂存在了selector内部相对应的channel里面。下面看代码:

//Selector
    public void send(Send send) {
        KafkaChannel channel = channelOrFail(send.destination());  //找到数据包相对应的connection
        try {
            channel.setSend(send);  //暂存在这个connection(channel)里面
        } catch (CancelledKeyException e) {
            this.failedSends.add(send.destination());
            close(channel);
        }
    }
//KafkaChannel
    public void setSend(Send send) {
        if (this.send != null)  //关键点:当前的没有发出去之前,不能暂存下1个!!!关于这个,后面还要详细分析
            throw new IllegalStateException("Attempt to begin a send operation with prior send operation still in progress.");
        this.send = send;   //暂存这个数据包
        this.transportLayer.addInterestOps(SelectionKey.OP_WRITE);
    }

public class KafkaChannel {
    private final String id;
    private final TransportLayer transportLayer;
    private final Authenticator authenticator;
    private final int maxReceiveSize;
    private NetworkReceive receive;
    private Send send;   //关键点:1个channel一次只能存放1个数据包,在当前的send数据包没有完整发出去之前,不能存放下一个
    ...
}

暂存在channel中之后,poll函数进行处理,我们抽象出一个输入-输出模型如下:
输入:暂存的send数据包
输出:完成的sends, 完成的receive(针对上1次的send), 建立的连接, 断掉的连接。

kafka 客户端配置账号密码_ci_02

@Override
    public void poll(long timeout) throws IOException {
        if (timeout < 0)
            throw new IllegalArgumentException("timeout should be >= 0");
        clear();  //关键点:每次poll之前,会清空“输出”
        if (hasStagedReceives())
            timeout = 0;
        /* check ready keys */
        long startSelect = time.nanoseconds();
        int readyKeys = select(timeout);
        long endSelect = time.nanoseconds();
        currentTimeNanos = endSelect;
        this.sensors.selectTime.record(endSelect - startSelect, time.milliseconds());

        if (readyKeys > 0) {
            Set<SelectionKey> keys = this.nioSelector.selectedKeys();
            Iterator<SelectionKey> iter = keys.iterator();
            while (iter.hasNext()) {
                SelectionKey key = iter.next();
                iter.remove();
                KafkaChannel channel = channel(key);

                // register all per-connection metrics at once
                sensors.maybeRegisterConnectionMetrics(channel.id());
                lruConnections.put(channel.id(), currentTimeNanos);

                try {
                    /* complete any connections that have finished their handshake */
                    if (key.isConnectable()) {
                        channel.finishConnect();    //把建立的连接,加入输出结果集合
                        this.connected.add(channel.id());
                        this.sensors.connectionCreated.record();
                    }

                    ...

                    if (channel.ready() && key.isReadable() && !hasStagedReceive(channel)) {
                        NetworkReceive networkReceive;
                        while ((networkReceive = channel.read()) != null)
                            addToStagedReceives(channel, networkReceive);
                    }

                    if (channel.ready() && key.isWritable()) {
                        Send send = channel.write();
                        if (send != null) {
                            this.completedSends.add(send);  //把完成的发送,加入输出结果集合
                            this.sensors.recordBytesSent(channel.id(), send.size());
                        }
                    }

                    if (!key.isValid()) {
                        close(channel);
                        this.disconnected.add(channel.id());  //把断掉的连接,加入输出结果集合
                    }
                } catch (Exception e) {
                    String desc = channel.socketDescription();
                    if (e instanceof IOException)
                        log.debug("Connection with {} disconnected", desc, e);
                    else
                        log.warn("Unexpected error from {}; closing connection", desc, e);
                    close(channel);
                    this.disconnected.add(channel.id()); //把断掉的连接,加入输出结果集合
                }
            }
        }

        addToCompletedReceives(); //把完成的接收,加入输出结果集合

        long endIo = time.nanoseconds();
        this.sensors.ioTime.record(endIo - endSelect, time.milliseconds());
        maybeCloseOldestConnection();
    }

channel每次只能send一个请求,所以会在发送前判断

InFlightRequests缓存了已经发送但是还没有收到响应的ClientRequset,主要字段有:

final class InFlightRequests {
    // 每个连接最多缓存ClientRequset的个数
    private final int maxInFlightRequestsPerConnection;
    // key是nodeID,value是clientRequest
    private final Map<String, Deque<ClientRequest>> requests = new HashMap<String, Deque<ClientRequest>>();
}

canSendMore方法判断是否可以向指定的node发送请求

final class InFlightRequests {
    /**
     * Can we send more requests to this node?
     * 
     * @param node Node in question
     * @return true iff we have no requests still being sent to the given node
     */
    public boolean canSendMore(String node) {
        Deque<ClientRequest> queue = requests.get(node);
        //queue.peekFirst().request().completed()表示当前队头的请求已经发送完成,如果迟迟发送不出去,则不能向这个node发送消息。
        //队头的消息和KafkaChannel.send字段指向的是同一个消息,避免覆盖send也不会指向新的请求。
        //再判断是否积压请求。
        return queue == null || queue.isEmpty() ||
               (queue.peekFirst().request().completed() && queue.size() < this.maxInFlightRequestsPerConnection);
    }

 

核心原理之1 – 消息的分包

在上面的代码中,为什么会有addToStagedReceives? 什么叫做staged receives呢? 这叫要从数据的分包说起:

在NetworkClient中,往下传的是一个完整的ClientRequest,进到Selector,暂存到channel中的,也是一个完整的Send对象(1个数据包)。但这个Send对象,交由底层的channel.write(Bytebuffer b)的时候,并不一定一次可以完全发送,可能要调用多次write,才能把一个Send对象完全发出去。这是因为write是非阻塞的,不是等到完全发出去,才会返回。所以才有上面的代码:

if (channel.ready() && key.isWritable()) {
                        Send send = channel.write(); //send不为空,表示完全发送出去,返回发出去的这个Send对象。如果没完全发出去,返回null
                        if (send != null) {  
                            this.completedSends.add(send);
                            this.sensors.recordBytesSent(channel.id(), send.size());
                        }
                    }

同样,在接收的时候,channel.read(Bytebuffer b),一个response也可能要read多次,才能完全接收。所以就有了上面的while循环代码:

if (channel.ready() && key.isReadable() && !hasStagedReceive(channel)) {
                        NetworkReceive networkReceive;
                        while ((networkReceive = channel.read()) != null)  //循环接收,直到1个response完全接收到,才会从while循环退出
                            addToStagedReceives(channel, networkReceive);
                    }

核心原理之2 – 消息的分界

从上面知道,底层数据的通信,是在每一个channel上面,2个源源不断的byte流,一个send流,一个receive流。
send的时候,还好说,发送之前知道一个完整的消息的大小;
那接收的时候,我怎么知道一个msg response什么时候结束,然后开始接收下一个response呢?

这就需要一个小技巧:在所有request,response头部,首先是一个定长的,4字节的头,receive的时候,至少调用2次read,先读取这4个字节,获取整个response的长度,接下来再读取消息体。

public class NetworkReceive implements Receive {
    private final String source;
    private final ByteBuffer size;  //头部4字节的buffer
    private final int maxSize;
    private ByteBuffer buffer;  //后面整个消息response的buffer

    public NetworkReceive(String source) {
        this.source = source;
        this.size = ByteBuffer.allocate(4);   //先分配4字节的头部
        this.buffer = null;
        this.maxSize = UNLIMITED;
   }
}

核心原理之3 - 消息时序保证

在InFlightRequests中,存放了所有发出去,但是response还没有回来的request。request发出去的时候,入对;response回来,就把相对应的request出对。

final class InFlightRequests {

    private final int maxInFlightRequestsPerConnection;
    private final Map<String, Deque<ClientRequest>> requests = new HashMap<String, Deque<ClientRequest>>();
}

这个有个关键点:我们注意到request与response的配对,在这里是用队列表达的,而不是Map。用队列的入队,出队,完成2者的匹配。要实现这个,服务器就必须要保证消息的时序:即在一个socket上面,假如发出去的reqeust是0, 1, 2,那返回的response的顺序也必须是0, 1, 2。

但是服务器是1 + N + M模型,所有的请求进入一个requestQueue,然后是多线程并行处理的。那它如何保证消息的时序呢?

答案是mute/unmute机制:每当一个channel上面接收到一个request,这个channel就会被mute,然后等response返回之后,才会再unmute。这样就保证了同1个连接上面,同时只会有1个请求被处理。

下面是服务端的代码:

selector.completedReceives.asScala.foreach { receive =>
          try {
            val channel = selector.channel(receive.source)
            val session = RequestChannel.Session(new KafkaPrincipal(KafkaPrincipal.USER_TYPE, channel.principal.getName),
              channel.socketAddress)
            val req = RequestChannel.Request(processor = id, connectionId = receive.source, session = session, buffer = receive.payload, startTimeMs = time.milliseconds, securityProtocol = protocol)
            requestChannel.sendRequest(req)
          } catch {
            case e @ (_: InvalidRequestException | _: SchemaException) =>
              // note that even though we got an exception, we can assume that receive.source is valid. Issues with constructing a valid receive object were handled earlier
              error("Closing socket for " + receive.source + " because of error", e)
              close(selector, receive.source)
          }
          selector.mute(receive.source)    //收到请求,把这个请求对应的channel, mute
        }

        selector.completedSends.asScala.foreach { send =>
          val resp = inflightResponses.remove(send.destination).getOrElse {
            throw new IllegalStateException(s"Send for ${send.destination} completed, but not in `inflightResponses`")
          }
          resp.request.updateRequestMetrics()
          selector.unmute(send.destination)  //发送response之后,把这个responese对应的channel, unmute
        }

kafka需要确保一个channel上request被处理的顺序是其发送的顺序。因此对于每个channel而言,每次poll上层最多只能看见一个请求,当该请求处理完成之后,再处理其他的请求。对Server端和Client端来说处理方式不一样。Selector这个类在Client和Server端都会调用,所以这里存在两种情况

应用在 Server 端时,Server 为了保证消息的时序性,在 Selector 中提供了两个方法:mute(String id) 和 unmute(String id),对该 KafkaChannel 做标记来保证同时只能处理这个 Channel 的一个 request(可以理解为排它锁)。当 Server 端接收到 request 后,先将其放入 stagedReceives 集合中,此时该 Channel 还未 mute,这个 Receive 会被放入 completedReceives 集合中。Server 在对 completedReceives 集合中的 request 进行处理时,会先对该 Channel mute,处理后的 response 发送完成后再对该 Channel unmute,然后才能处理该 Channel 其他的请求

应用在 Client 端时,Client 并不会调用 Selector 的 mute() 和 unmute() 方法,client 发送消息的时序性而是通过 InFlightRequests(保存了max.in.flight.requests.per.connection参数的值) 和 RecordAccumulator 的 mutePartition 来保证的,因此对于 Client 端而言,这里接收到的所有 Receive 都会被放入到 completedReceives 的集合中等待后续处理。

NetworkClient实现思路

上面已经讲到:
(1)Selector维护了所有连接的连接池,所有连接上,消息的发送、接收都是通过poll函数进行的
(2)一个channel一次只能暂存1个Send对象。

但如果这个Send对象,一次poll之后,没有完全发送出去怎么办呢?看上层NetworkClient怎么处理的:

关键的client.ready函数

先从Sender的run()函数看起:

public void run(long now) {
        Cluster cluster = metadata.fetch();
        // get the list of partitions with data ready to send
        RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now);

        if (result.unknownLeadersExist)
            this.metadata.requestUpdate();

        // remove any nodes we aren't ready to send to
        Iterator<Node> iter = result.readyNodes.iterator();
        long notReadyTimeout = Long.MAX_VALUE;
        while (iter.hasNext()) {
            Node node = iter.next();
            if (!this.client.ready(node, now)) {   //关键函数!!!
                iter.remove();
                notReadyTimeout = Math.min(notReadyTimeout, this.client.connectionDelay(node, now));
            }
        }

        // create produce requests
        Map<Integer, List<RecordBatch>> batches = this.accumulator.drain(cluster,
                                                                         result.readyNodes,
                                                                         this.maxRequestSize,
                                                                         now);

        List<RecordBatch> expiredBatches = this.accumulator.abortExpiredBatches(this.requestTimeout, cluster, now);
        // update sensors
        for (RecordBatch expiredBatch : expiredBatches)
            this.sensors.recordErrors(expiredBatch.topicPartition.topic(), expiredBatch.recordCount);

        sensors.updateProduceRequestMetrics(batches);
        List<ClientRequest> requests = createProduceRequests(batches, now);

        long pollTimeout = Math.min(result.nextReadyCheckDelayMs, notReadyTimeout);
        if (result.readyNodes.size() > 0) {
            log.trace("Nodes with data ready to send: {}", result.readyNodes);
            log.trace("Created {} produce requests: {}", requests.size(), requests);
            pollTimeout = 0;
        }

        for (ClientRequest request : requests)  //每个request分属于不同的Node
            client.send(request, now);   //client的send就是直接调用了selector.send,消息暂存在channel里面,没有发送

        this.client.poll(pollTimeout, now); //调用selector.poll,处理连接、发送、接收
    }

在上面的代码中,有一个关键函数:client.ready(Node n, ..), 这个函数内部会判断这个node有没有ready,如果没有ready,就会从readNodes里面移除,接下来就不会往这个Node发送消息。

那什么叫ready呢? 我们看一下代码:

public boolean ready(Node node, long now) {
        if (isReady(node, now))
            return true;

        if (connectionStates.canConnect(node.idString(), now))
            initiateConnect(node, now);
        return false;
    }

    public boolean isReady(Node node, long now) {
        return !metadataUpdater.isUpdateDue(now) && canSendRequest(node.idString());
    }

    private boolean canSendRequest(String node) {
        return connectionStates.isConnected(node) && selector.isChannelReady(node) && inFlightRequests.canSendMore(node);
    }

    public boolean canSendMore(String node) {
        Deque<ClientRequest> queue = requests.get(node);
        return queue == null || queue.isEmpty() ||
               (queue.peekFirst().request().completed() && queue.size() < this.maxInFlightRequestsPerConnection);
    }

    public boolean completed() {
        return remaining <= 0 && !pending;
    }

上面的代码封了好几层,但总结下来,一个Node ready,可以向其发送请求,需要符合以下几个条件:
1. metadata正常,不需要update: !metadataUpdater.isUpdateDue(now)
2. 连接正常 connectionStates.isConnected(node)
3. channel是ready状态:这个对于PlaintextChannel, 一直返回true
4. 当前该channel中,没有in flight request,所有请求都处理完了
5. 当前该channel中,队列尾部的request已经完全发送出去, request.completed(),并且inflight request数目,没有超过设定的最大值(缺省为5,即允许在“天上飞”的request最多有5个,所谓在“天上飞”,就是发出去了,response还没有回来)

而上面的第5个条件,正是解决了上面的问题:一个channel里面的Send对象要是只发送了部分,下1次就不会处于ready状态了。

client.poll函数

下面看一下client.poll,是如何封装selector.poll的:

public List<ClientResponse> poll(long timeout, long now) {
        long metadataTimeout = metadataUpdater.maybeUpdate(now);
        try {
            this.selector.poll(Utils.min(timeout, metadataTimeout, requestTimeoutMs));
        } catch (IOException e) {
            log.error("Unexpected error during I/O", e);
        }

        //上面说到,selector.poll函数,会把处理结果,放到一堆的状态变量里面(输出结果集),现在就是处理这堆输出结果的时候了。

long updatedNow = this.time.milliseconds();
        List<ClientResponse> responses = new ArrayList<>();
        handleCompletedSends(responses, updatedNow);
        handleCompletedReceives(responses, updatedNow);
        handleDisconnections(responses, updatedNow);
        handleConnections();
        handleTimedOutRequests(responses, updatedNow);

        // invoke callbacks
        for (ClientResponse response : responses) {
            if (response.request().hasCallback()) {
                try {
                    response.request().callback().onComplete(response);
                } catch (Exception e) {
                    log.error("Uncaught error in request completion:", e);
                }
            }
        }

        return responses;
   }
//Selector中的那堆状态变量,在每次poll之前,被clear情况掉,每次poll之后,填充。
//然后在client.poll里面,这堆输出结果被处理
public class Selector implements Selectable {
    。。。
    private final List<Send> completedSends;
    private final List<NetworkReceive> completedReceives;
    private final Map<KafkaChannel, Deque<NetworkReceive>> stagedReceives;
    private final List<String> disconnected;
    private final List<String> connected;
。。。
}

连接检测 & 自动重连机制

在所有tcp长链接的编程中,都有一个基本问题要解决:如何判断1个连接是否断开?客户端需要维护所有连接的状态(connecting, connected, disconnected),然后根据连接状态做不同逻辑。

但在NIO中,并没有一个函数,可以直接告诉你一个连接是否断开了;在NetworkClient里面,也并没有开一个线程,不断发送心跳消息,来检测连接。那它是如何处理的呢?

检测连接断开的手段

networkClient的实现中,用了3种手段,来判断一个连接是否断开:
手段1:所有的IO函数,connect, finishConnect, read, write都会抛IOException,因此任何时候,调用这些函数的时候,只要抛异常,就认为连接已经断开。

手段2:selectionKey.isValid()

手段3:inflightRequests,所有发出去的request,都设置有一个response返回的时间。在这个时间内,response没有回来,就认为连接断了。

前2种手段,都集中在Select.poll函数里面:

public void poll(long timeout) throws IOException {
        if (timeout < 0)
            throw new IllegalArgumentException("timeout should be >= 0");
        clear();
        if (hasStagedReceives())
            timeout = 0;
        /* check ready keys */
        long startSelect = time.nanoseconds();
        int readyKeys = select(timeout);
        long endSelect = time.nanoseconds();
        currentTimeNanos = endSelect;
        this.sensors.selectTime.record(endSelect - startSelect, time.milliseconds());

        if (readyKeys > 0) {
            Set<SelectionKey> keys = this.nioSelector.selectedKeys();
            Iterator<SelectionKey> iter = keys.iterator();
            while (iter.hasNext()) {
                SelectionKey key = iter.next();
                iter.remove();
                KafkaChannel channel = channel(key);

                // register all per-connection metrics at once
                sensors.maybeRegisterConnectionMetrics(channel.id());
                lruConnections.put(channel.id(), currentTimeNanos);

                try {
                    /* complete any connections that have finished their handshake */
                    if (key.isConnectable()) {
                        channel.finishConnect();
                        this.connected.add(channel.id());
                        this.sensors.connectionCreated.record();
                    }

                    /* if channel is not ready finish prepare */
                    if (channel.isConnected() && !channel.ready())
                        channel.prepare();

                    /* if channel is ready read from any connections that have readable data */
                    if (channel.ready() && key.isReadable() && !hasStagedReceive(channel)) {
                        NetworkReceive networkReceive;
                        while ((networkReceive = channel.read()) != null)
                            addToStagedReceives(channel, networkReceive);
                    }

                    /* if channel is ready write to any sockets that have space in their buffer and for which we have data */
                    if (channel.ready() && key.isWritable()) {
                        Send send = channel.write();
                        if (send != null) {
                            this.completedSends.add(send);
                            this.sensors.recordBytesSent(channel.id(), send.size());
                        }
                    }

                    if (!key.isValid()) {   //手段2
                        close(channel);
                        this.disconnected.add(channel.id());
                    }
                } catch (Exception e) {  //手段1:任何一个io函数,只要抛错,就认为连接断了
                    String desc = channel.socketDescription();
                    if (e instanceof IOException)
                        log.debug("Connection with {} disconnected", desc, e);
                    else
                        log.warn("Unexpected error from {}; closing connection", desc, e);
                    close(channel);
                    this.disconnected.add(channel.id());
                }
            }
        }

        addToCompletedReceives();

        long endIo = time.nanoseconds();
        this.sensors.ioTime.record(endIo - endSelect, time.milliseconds());
        maybeCloseOldestConnection();
    }

第3种手段,在NetworkClient里面:

public List<ClientResponse> poll(long timeout, long now) {
        long metadataTimeout = metadataUpdater.maybeUpdate(now);
        try {
            this.selector.poll(Utils.min(timeout, metadataTimeout, requestTimeoutMs));
        } catch (IOException e) {
            log.error("Unexpected error during I/O", e);
        }

        long updatedNow = this.time.milliseconds();
        List<ClientResponse> responses = new ArrayList<>();
        handleCompletedSends(responses, updatedNow);
        handleCompletedReceives(responses, updatedNow);
        handleDisconnections(responses, updatedNow);
        handleConnections();
        handleTimedOutRequests(responses, updatedNow); //手段3:处理所有TimeOutRequests

        for (ClientResponse response : responses) {
            if (response.request().hasCallback()) {
                try {
                    response.request().callback().onComplete(response);
                } catch (Exception e) {
                    log.error("Uncaught error in request completion:", e);
                }
            }
        }

        return responses;
    }

    private void processDisconnection(List<ClientResponse> responses, String nodeId, long now) {
        connectionStates.disconnected(nodeId, now);
        for (ClientRequest request : this.inFlightRequests.clearAll(nodeId)) {
            log.trace("Cancelled request {} due to node {} being disconnected", request, nodeId);
            if (!metadataUpdater.maybeHandleDisconnection(request)) //把MetaDataRequest排除在外,其它所有请求,只要超时,就认为连接断开
                responses.add(new ClientResponse(request, now, true, null));
        }
    }

除了上述的2个地方,还要一个地方,就是初始化的时候

private void initiateConnect(Node node, long now) {
        String nodeConnectionId = node.idString();
        try {
            log.debug("Initiating connection to node {} at {}:{}.", node.id(), node.host(), node.port());
            this.connectionStates.connecting(nodeConnectionId, now);
            selector.connect(nodeConnectionId,
                             new InetSocketAddress(node.host(), node.port()),
                             this.socketSendBuffer,
                             this.socketReceiveBuffer);
        } catch (IOException e) { //检测到连接断开
            connectionStates.disconnected(nodeConnectionId, now);
            metadataUpdater.requestUpdate();
            log.debug("Error connecting to node {} at {}:{}:", node.id(), node.host(), node.port(), e);
        }
    }

检测时机

从上面代码我们可以看出,连接的检测时机,有2个:
一个是初始建立连接的时候,一个就是每次poll循环,每poll一次,就收集到一个断开的连接集合。

下面分别是Selector和NetworkClient中,关于连接状态的数据结构://Selector中的连接状态

public class Selector implements Selectable {
    private final List<String> disconnected;
    private final List<String> connected;
    ..
}

 

//NetworkClient中的连接状态维护
public class NetworkClient implements KafkaClient {
    private final ClusterConnectionStates connectionStates;
    ...
}

final class ClusterConnectionStates {
    private final long reconnectBackoffMs; //重连的时间间隔
    private final Map<String, NodeConnectionState> nodeState;
}

    private static class NodeConnectionState {
        ConnectionState state;
        long lastConnectAttemptMs;  //上1次发起重连的时间
        ...
    }

public enum ConnectionState {
    DISCONNECTED, CONNECTING, CONNECTED
}

总结:
1. Selector中的连接状态,在每次poll之前,会调用clear清空;在poll之后,收集。
2. Selector中的连接状态,会传给上层NetworkClient,用于它更新自己的连接状态
3. 出了来自Selctor,NetworkClient自己内部的inflightRequests,也就是上面的手段3, 也用于检测连接状态。

通过上面的机制,就保证了NetworkClient可以实时准确维护所有connection的状态。

自动重连 - ready函数

状态知道了,那剩下的就是自动重连了。这个发生在更上层的Send的run函数里面:

//Sender
    public void run(long now) {
        Cluster cluster = metadata.fetch();
        RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now);

        if (result.unknownLeadersExist)
            this.metadata.requestUpdate();

        Iterator<Node> iter = result.readyNodes.iterator();
        long notReadyTimeout = Long.MAX_VALUE;
        while (iter.hasNext()) {
            Node node = iter.next();
            if (!this.client.ready(node, now)) {  //关键的ready函数
                iter.remove();
                notReadyTimeout = Math.min(notReadyTimeout, this.client.connectionDelay(node, now));
            }
        }

    public boolean ready(Node node, long now) {
        if (isReady(node, now))
            return true;

        if (connectionStates.canConnect(node.idString(), now))
            initiateConnect(node, now);   //发起重连

        return false;
    }

    public boolean canConnect(String id, long now) {
        NodeConnectionState state = nodeState.get(id);
        if (state == null)
            return true;
        else
            return state.state == ConnectionState.DISCONNECTED && now - state.lastConnectAttemptMs >= this.reconnectBackoffMs;
    }

从上面函数可以看出,每次Send发数据之前,会先调用client.ready(node)判断该node的连接是否可用。

在ready内部,如果连接不是connected状态,会再判断是否可以发起自动重连,检测条件有2个:

条件1: 它不能是connecting状态,必须是disconnected

条件2: 重连不能太频繁。当前时间距离上1次重连时间,要有一定的间隔。如果broker挂了,你太频繁的重连也不起作用。

这里有个关键点:因为都是非阻塞调用,本次虽然检测到连接断了,但只是发起连接,不会等到连接建立好了,再执行下面的代码。
会在poll之后,判断连接是否建立;在下1次或者下几次poll之前,可能连接才会建立好,ready才会返回true.