写在前面:
其实本程序还有很多需要完善和改进的地方,后面会进行完善,大家多多包涵
概述
- 通过完整图片与缺失滑块的图片进行像素对比,确定滑块位置
- 边缘检测算法,确定位置
- 规避检测,模拟人的行为进行滑动滑块
实现
-这里以带刷网为例,展示验证码滑动的效果
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2021/1/2 18:34
# @Author : huni
# @File : 验证码2.py
# @Software: PyCharm
from selenium import webdriver
import time
import base64
from PIL import Image
from io import BytesIO
from selenium.webdriver.support.ui import WebDriverWait
import random
import copy
class VeriImageUtil():
def __init__(self):
self.defaultConfig = {
"grayOffset": 20,
"opaque": 1,
"minVerticalLineCount": 30
}
self.config = copy.deepcopy(self.defaultConfig)
def updateConfig(self, config):
# temp = copy.deepcopy(config)
for k in self.config:
if k in config.keys():
self.config[k] = config[k]
def getMaxOffset(self, *args):
# 计算偏移平均值最大的数
av = sum(args) / len(args)
maxOffset = 0
for a in args:
offset = abs(av - a)
if offset > maxOffset:
maxOffset = offset
return maxOffset
def isGrayPx(self, r, g, b):
# 是否是灰度像素点,允许波动offset
return self.getMaxOffset(r, g, b) < self.config["grayOffset"]
def isDarkStyle(self, r, g, b):
# 灰暗风格
return r < 128 and g < 128 and b < 128
def isOpaque(self, px):
# 不透明
return px[3] >= 255 * self.config["opaque"]
def getVerticalLineOffsetX(self, bgImage):
# bgImage = Image.open("./image/bg.png")
# bgImage.im.mode = 'RGBA'
bgBytes = bgImage.load()
x = 0
while x < bgImage.size[0]:
y = 0
# 点》》线,灰度线条数量
verticalLineCount = 0
while y < bgImage.size[1]:
px = bgBytes[x, y]
r = px[0]
g = px[1]
b = px[2]
# alph = px[3]
# print(px)
if self.isDarkStyle(r, g, b) and self.isGrayPx(r, g, b) and self.isOpaque(px):
verticalLineCount += 1
else:
verticalLineCount = 0
y += 1
continue
if verticalLineCount >= self.config["minVerticalLineCount"]:
# 连续多个像素都是灰度像素,直线,认为需要滑动这么多
# print(x, y)
return x
y += 1
x += 1
pass
class DragUtil():
def __init__(self, driver):
self.driver = driver
def __getRadomPauseScondes(self):
"""
:return:随机的拖动暂停时间
"""
return random.uniform(0.6, 0.9)
def simulateDragX(self, source, targetOffsetX):
"""
模仿人的拖拽动作:快速沿着X轴拖动(存在误差),再暂停,然后修正误差
防止被检测为机器人,出现“图片被怪物吃掉了”等验证失败的情况
:param source:要拖拽的html元素
:param targetOffsetX: 拖拽目标x轴距离
:return: None
"""
action_chains = webdriver.ActionChains(self.driver)
# 点击,准备拖拽
action_chains.click_and_hold(source)
# 拖动次数,二到三次
dragCount = random.randint(2, 3)
if dragCount == 2:
# 总误差值
sumOffsetx = random.randint(-15, 15)
action_chains.move_by_offset(targetOffsetX + sumOffsetx, 0)
# 暂停一会
action_chains.pause(self.__getRadomPauseScondes())
# 修正误差,防止被检测为机器人,出现图片被怪物吃掉了等验证失败的情况
action_chains.move_by_offset(-sumOffsetx, 0)
elif dragCount == 3:
# 总误差值
sumOffsetx = random.randint(-15, 15)
action_chains.move_by_offset(targetOffsetX + sumOffsetx, 0)
# 暂停一会
action_chains.pause(self.__getRadomPauseScondes())
# 已修正误差的和
fixedOffsetX = 0
# 第一次修正误差
if sumOffsetx < 0:
offsetx = random.randint(sumOffsetx, 0)
else:
offsetx = random.randint(0, sumOffsetx)
fixedOffsetX = fixedOffsetX + offsetx
action_chains.move_by_offset(-offsetx, 0)
action_chains.pause(self.__getRadomPauseScondes())
# 最后一次修正误差
action_chains.move_by_offset(-sumOffsetx + fixedOffsetX, 0)
action_chains.pause(self.__getRadomPauseScondes())
else:
raise Exception("莫不是系统出现了问题?!")
# 参考action_chains.drag_and_drop_by_offset()
action_chains.release()
action_chains.perform()
def simpleSimulateDragX(self, source, targetOffsetX):
"""
简单拖拽模仿人的拖拽:快速沿着X轴拖动,直接一步到达正确位置,再暂停一会儿,然后释放拖拽动作
B站是依据是否有暂停时间来分辨人机的,这个方法适用。
:param source:
:param targetOffsetX:
:return: None
"""
action_chains = webdriver.ActionChains(self.driver)
# 点击,准备拖拽
action_chains.click_and_hold(source)
action_chains.pause(0.2)
action_chains.move_by_offset(targetOffsetX, 0)
action_chains.pause(0.6)
action_chains.release()
action_chains.perform()
def checkVeriImage(driver):
WebDriverWait(driver, 5).until(
lambda driver: driver.find_element_by_css_selector('.geetest_canvas_bg.geetest_absolute'))
time.sleep(1)
im_info = driver.execute_script(
'return document.getElementsByClassName("geetest_canvas_bg geetest_absolute")[0].toDataURL("image/png");')
# 拿到base64编码的图片信息
im_base64 = im_info.split(',')[1]
# 转为bytes类型
im_bytes = base64.b64decode(im_base64)
with open('./temp_bg.png', 'wb') as f:
# 保存图片到本地
f.write(im_bytes)
image_data = BytesIO(im_bytes)
bgImage = Image.open(image_data)
# 滑块距离左边有 5 像素左右误差
offsetX = VeriImageUtil().getVerticalLineOffsetX(bgImage)
print("offsetX: {}".format(offsetX))
if not type(offsetX) == int:
# 计算不出,重新加载
driver.find_element_by_css_selector(".geetest_refresh_1").click()
checkVeriImage(driver)
return
elif offsetX == 0:
# 计算不出,重新加载
driver.find_element_by_css_selector(".geetest_refresh_1").click()
checkVeriImage(driver)
return
else:
dragVeriImage(driver, offsetX)
def dragVeriImage(driver, offsetX):
# 可能产生检测到右边缘的情况
# 拖拽
eleDrag = driver.find_element_by_css_selector(".geetest_slider_button")
dragUtil = DragUtil(driver)
dragUtil.simulateDragX(eleDrag, offsetX - 10)
time.sleep(2.5)
if isNeedCheckVeriImage(driver):
checkVeriImage(driver)
return
dragUtil.simulateDragX(eleDrag, offsetX - 6)
time.sleep(2.5)
if isNeedCheckVeriImage(driver):
checkVeriImage(driver)
return
# 滑块宽度40左右
dragUtil.simulateDragX(eleDrag, offsetX - 56)
time.sleep(2.5)
if isNeedCheckVeriImage(driver):
checkVeriImage(driver)
return
dragUtil.simulateDragX(eleDrag, offsetX - 52)
if isNeedCheckVeriImage(driver):
checkVeriImage(driver)
return
def isNeedCheckVeriImage(driver):
if driver.find_element_by_css_selector(".geetest_panel_error").is_displayed():
driver.find_element_by_css_selector(".geetest_panel_error_content").click();
return True
return False
def task():
# 此步骤很重要,设置chrome为开发者模式,防止被各大网站识别出来使用了Selenium
# options = webdriver.ChromeOptions()
# options.add_experimental_option('excludeSwitches', ['enable-automation'])
# driver = webdriver.Firefox(executable_path=r"../../../res/webdriver/geckodriver_x64_0.26.0.exe",options=options)
driver = webdriver.Chrome()
driver.get('https://www.ieqq.net/?cid=222&tid=5584')
time.sleep(3)
# driver.find_element_by_xpath('//*[@id="gt-register-mobile"]/div/div[2]/div[1]/div[2]/div/div[2]/div['
# '1]/input').send_keys("17633935269")
# driver.find_element_by_xpath('//*[@id="gt-register-mobile"]/div/div[2]/div[1]/div[2]/div/div[2]/div[2]/div['
# '1]/div').click()
# driver.find_element_by_css_selector(".btn.btn-login").click()
# time.sleep(2)
# 搜索栏标签定位
search_input = driver.find_element_by_xpath('//*[@id="inputvalue"]')
time.sleep(3)
# 标签的交互
search_input.send_keys('xxxxxx')
# 执行一组js程序
driver.execute_script('window.scrollTo(0,document.body.scrollHeight)')
time.sleep(2)
# 搜索按钮的定位
btn = driver.find_element_by_xpath('//*[@id="submit_buy"]')
# 点击搜索按钮
btn.click()
time.sleep(6)
driver.find_element_by_xpath('//*[@id="captcha"]/div[3]/div[3]').click()
time.sleep(3)
checkVeriImage(driver)
pass
# 该方法用来确认元素是否存在,如果存在返回flag=true,否则返回false
def isElementExist(driver, css):
try:
driver.find_element_by_css_selector(css)
return True
except:
return False
if __name__ == '__main__':
task()
写在后面
虽然说验证码破解是可以一定程度上解决登录爬虫的问题,
但是识别率也不可能达到百分之百识别,所以建议需要登录
才可以进行下去的爬虫程序,可以使用cookies模拟登陆,
仅需第一次登陆人工识别登陆验证码,或者扫描二维码,就可以使用一段时间,
当然各有利弊,cookies在一段时间后也会失效,这个和验证码都是见仁见智的操作。