Pandas去重函数:drop_duplicates()
“去重”通过字面意思不难理解,就是删除重复的数据。在一个数据集中,找出重复的数据删并将其删除,最终只保存一个唯一存在的数据项,这就是数据去重的整个过程。删除重复数据是数据分析中经常会遇到的一个问题。通过数据去重,不仅可以节省内存空间,提高写入性能,还可以提升数据集的精确度,使得数据集不受重复数据的影响。
Panda DataFrame 对象提供了一个数据去重的函数
drop_duplicates(),本节对该函数的用法做详细介绍。
函数格式
drop_duplicates()函数的语法格式如下:
df.drop_duplicates(subset=['A','B','C'],keep='first',inplace=True)
参数说明如下:
subset:表示要进去重的列名,默认为 None。
keep:有三个可选参数,分别是 first、last、False,默认为 first,表示只保留第一次出现的重复项,删除其余重复项,last 表示只保留最后一次出现的重复项,False 则表示删除所有重复项。
inplace:布尔值参数,默认为 False 表示删除重复项后返回一个副本,若为 Ture 则表示直接在原数据上删除重复项。
实际应用
首先创建一个包含有重复值的 DataFrame 对象,如下所示:
import pandas as pd
data={
'A':[1,0,1,1],
'B':[0,2,5,0],
'C':[4,0,4,4],
'D':[1,0,1,1]
}
df=pd.DataFrame(data=data)
print(df)
输出结果:
A B C D
0 1 0 4 1
1 0 2 0 0
2 1 5 4 1
3 1 0 4 1
1) 默认保留第一次出现的重复项
import pandas as pd
data={
'A':[1,0,1,1],
'B':[0,2,5,0],
'C':[4,0,4,4],
'D':[1,0,1,1]
}
df=pd.DataFrame(data=data)
#默认保留第一次出现的重复项
df.drop_duplicates()
输出结果:
A B C D
0 1 0 4 1
1 0 2 0 0
2 1 5 4 1
2) keep=False删除所有重复项
import pandas as pd
data={
'A':[1,0,1,1],
'B':[0,2,5,0],
'C':[4,0,4,4],
'D':[1,0,1,1]
}
df=pd.DataFrame(data=data)
#默认保留第一次出现的重复项
df.drop_duplicates(keep=False)
输出结果:
A B C D
1 0 2 0 0
2 1 5 4 1
3) 根据指定列标签去重
import pandas as pd
data={
'A':[1,3,3,3],
'B':[0,1,2,0],
'C':[4,5,4,4],
'D':[3,3,3,3]
}
df=pd.DataFrame(data=data)
#去除所有重复项,对于B列来说两个0是重复项
df.drop_duplicates(subset=['B'],keep=False)
#简写,省去subset参数
#df.drop_duplicates(['B'],keep=False)
print(df)
输出结果:
A B C D
1 3 1 5 3
2 3 2 4 3
从上述示例可以看出,删除重复项后,行标签使用的数字是原来的,并没有从 0 重新开始,那么我们应该怎么从 0 重置索引呢?Pandas 提供的 reset_index() 函数会直接使用重置后的索引。如下所示:
import pandas as pd
data={
'A':[1,3,3,3],
'B':[0,1,2,0],
'C':[4,5,4,4],
'D':[3,3,3,3]
}
df=pd.DataFrame(data=data)
#去除所有重复项,对于B来说两个0是重复项
df=df.drop_duplicates(subset=['B'],keep=False)
#重置索引,从0重新开始
df.reset_index(drop=True)
输出结果:
A B C D
0 3 1 5 3
1 3 2 4 3
4) 指定多列同时去重
创建一个 DataFrame 对象,如下所示:
import numpy as np
import pandas as pd
df = pd.DataFrame({'Country ID':[1,1,2,12,34,23,45,34,23,12,2,3,4,1],
'Age':[12,12,15,18, 19, 25, 21, 25, 25, 18, 25,12,32,18],
'Group ID':['a','z','c','a','b','s','d','a','b','s','a','d','a','f']})
#last只保留最后一个重复项
df.drop_duplicates(['Age','Group ID'],keep='last')
输出结果:
Country ID Age Group ID
0 1 12 a
1 1 12 z
2 2 15 c
3 3 18 a
4 4 19 b
5 3 25 s
6 4 21 d
8 2 25 b
9 1 18 s
10 2 25 a
11 3 12 d
12 4 32 a
13 1 18 f
上述数据集中,第 7 行、第 10 行对应的列标签数据相同,我们使用参数值“last”保留最后一个重复项,也就是第 10 行数据。