写在前面
在JDK中,提供了这样一种功能:它能够将复杂的逻辑拆分成一个个简单的逻辑来并行执行,待每个并行执行的逻辑执行完成后,再将各个结果进行汇总,得出最终的结果数据。有点像Hadoop中的MapReduce。
ForkJoin是由JDK1.7之后提供的多线程并发处理框架。ForkJoin框架的基本思想是分而治之。什么是分而治之?分而治之就是将一个复杂的计算,按照设定的阈值分解成多个计算,然后将各个计算结果进行汇总。相应的,ForkJoin将复杂的计算当做一个任务,而分解的多个计算则是当做一个个子任务来并行执行。
Fork/Join框架介绍
位于J.U.C(java.util.concurrent)中,是Java7中提供的用于执行并行任务的框架,其可以将大任务分割成若干个小任务,最终汇总每个小任务的结果后得到最终结果。基本思想和Hadoop的MapReduce思想类似。主要采用的是工作窃取算法(某个线程从其他队列里窃取任务来执行),并行分治计算中的一种Work-stealing策略
为什么需要使用工作窃取算法呢?
假如我们需要做一个比较大的任务,我们可以把这个任务分割为若干互不依赖的子任务,为了减少线程间的竞争,于是把这些子任务分别放到不同的队列里,并为每个队列创建一个单独的线程来执行队列里的任务,线程和队列一一对应,比如A线程负责处理A队列里的任务。但是有的线程会先把自己队列里的任务干完,而其他线程对应的队列里还有任务等待处理。干完活的线程与其等着,不如去帮其他线程干活,于是它就去其他线程的队列里窃取一个任务来执行。而在这时它们会访问同一个队列,所以为了减少窃取任务线程和被窃取任务线程之间的竞争,通常会使用双端队列,被窃取任务线程永远从双端队列的头部拿任务执行,而窃取任务的线程永远从双端队列的尾部拿任务执行。
工作窃取算法的优点:
充分利用线程进行并行计算,并减少了线程间的竞争
工作窃取算法的缺点:
在某些情况下还是存在竞争,比如双端队列里只有一个任务时。并且该算法会消耗更多的系统资源,比如创建多个线程和多个双端队列。
Fork/Join框架局限性
对于Fork/Join框架而言,当一个任务正在等待它使用Join操作创建的子任务结束时,执行这个任务的工作线程查找其他未被执行的任务,并开始执行这些未被执行的任务,通过这种方式,线程充分利用它们的运行时间来提高应用程序的性能。为了实现这个目标,Fork/Join框架执行的任务有一些局限性,如下所示。
- 任务只能使用Fork和Join操作来进行同步机制,如果使用了其他同步机制,则在同步操作时,工作线程就不能执行其他任务了。比如,在Fork/Join框架中,使任务进行了睡眠,那么,在睡眠期间内,正在执行这个任务的工作线程将不会执行其他任务了。
- 在Fork/Join框架中,所拆分的任务不应该去执行IO操作,比如:读写数据文件。
- 任务不能抛出检查异常,必须通过必要的代码来出来这些异常。
Fork/Join框架的核心类
Fork/Join框架的核心是两个类:ForkJoinPool和ForkJoinTask。ForkJoinPool负责实现工作窃取算法、管理工作线程、提供关于任务的状态以及执行信息。ForkJoinTask主要提供在任务中执行Fork和Join操作的机制。
代码示例
示例代码如下: