概要

本章是JUC系列的ConcurrentHashMap篇。内容包括:
ConcurrentHashMap介绍
ConcurrentHashMap原理和数据结构ConcurrentHashMap函数列表
ConcurrentHashMap源码分析(JDK1.7.0_40版本)
ConcurrentHashMap示例

转载请注明出处:

 

ConcurrentHashMap介绍

ConcurrentHashMap是线程安全的哈希表。HashMap, Hashtable, ConcurrentHashMap之间的关联如下:

 

  HashMap是非线程安全的哈希表,常用于单线程程序中。

  Hashtable是线程安全的哈希表,它是通过synchronized来保证线程安全的;即,多线程通过同一个“对象的同步锁”来实现并发控制。Hashtable在线程竞争激烈时,效率比较低(此时建议使用ConcurrentHashMap)!因为当一个线程访问Hashtable的同步方法时,其它线程就访问Hashtable的同步方法时,可能会进入阻塞状态。

  ConcurrentHashMap是线程安全的哈希表,它是通过“锁分段”来保证线程安全的。ConcurrentHashMap将哈希表分成许多片段(Segment),每一个片段除了保存哈希表之外,本质上也是一个“可重入的互斥锁”(ReentrantLock)。多线程对同一个片段的访问,是互斥的;但是,对于不同片段的访问,却是可以同步进行的。

 

 

关于HashMap,Hashtable以及ReentrantLock的更多内容,可以参考:
1. Java 集合系列10之 HashMap详细介绍(源码解析)和使用示例2. Java 集合系列11之 Hashtable详细介绍(源码解析)和使用示例3. Java多线程系列--“JUC锁”02之 互斥锁ReentrantLock

 

ConcurrentHashMap原理和数据结构

要想搞清ConcurrentHashMap,必须先弄清楚它的数据结构:

map remove多线程 多线程concurrenthashmap_map remove多线程

  (01) ConcurrentHashMap继承于AbstractMap抽象类。
  (02) Segment是ConcurrentHashMap中的内部类,它就是ConcurrentHashMap中的“锁分段”对应的存储结构。ConcurrentHashMap与Segment是组合关系,1个ConcurrentHashMap对象包含若干个Segment对象。在代码中,这表现为ConcurrentHashMap类中存在“Segment数组”成员。
  (03) Segment类继承于ReentrantLock类,所以Segment本质上是一个可重入的互斥锁。
  (04) HashEntry也是ConcurrentHashMap的内部类,是单向链表节点,存储着key-value键值对。Segment与HashEntry是组合关系,Segment类中存在“HashEntry数组”成员,“HashEntry数组”中的每个HashEntry就是一个单向链表。

  对于多线程访问对一个“哈希表对象”竞争资源,Hashtable是通过一把锁来控制并发;而ConcurrentHashMap则是将哈希表分成许多片段,对于每一个片段分别通过一个互斥锁来控制并发。ConcurrentHashMap对并发的控制更加细腻,它也更加适应于高并发场景!

 

ConcurrentHashMap函数列表

// 创建一个带有默认初始容量 (16)、加载因子 (0.75) 和 concurrencyLevel (16) 的新的空映射。
ConcurrentHashMap()
// 创建一个带有指定初始容量、默认加载因子 (0.75) 和 concurrencyLevel (16) 的新的空映射。
ConcurrentHashMap(int initialCapacity)
// 创建一个带有指定初始容量、加载因子和默认 concurrencyLevel (16) 的新的空映射。
ConcurrentHashMap(int initialCapacity, float loadFactor)
// 创建一个带有指定初始容量、加载因子和并发级别的新的空映射。
ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel)
// 构造一个与给定映射具有相同映射关系的新映射。
ConcurrentHashMap(Map<? extends K,? extends V> m)

// 从该映射中移除所有映射关系
void clear()
// 一种遗留方法,测试此表中是否有一些与指定值存在映射关系的键。
boolean contains(Object value)
// 测试指定对象是否为此表中的键。
boolean containsKey(Object key)
// 如果此映射将一个或多个键映射到指定值,则返回 true。
boolean containsValue(Object value)
// 返回此表中值的枚举。
Enumeration<V> elements()
// 返回此映射所包含的映射关系的 Set 视图。
Set<Map.Entry<K,V>> entrySet()
// 返回指定键所映射到的值,如果此映射不包含该键的映射关系,则返回 null。
V get(Object key)
// 如果此映射不包含键-值映射关系,则返回 true。
boolean isEmpty()
// 返回此表中键的枚举。
Enumeration<K> keys()
// 返回此映射中包含的键的 Set 视图。
Set<K> keySet()
// 将指定键映射到此表中的指定值。
V put(K key, V value)
// 将指定映射中所有映射关系复制到此映射中。
void putAll(Map<? extends K,? extends V> m)
// 如果指定键已经不再与某个值相关联,则将它与给定值关联。
V putIfAbsent(K key, V value)
// 从此映射中移除键(及其相应的值)。
V remove(Object key)
// 只有目前将键的条目映射到给定值时,才移除该键的条目。
boolean remove(Object key, Object value)
// 只有目前将键的条目映射到某一值时,才替换该键的条目。
V replace(K key, V value)
// 只有目前将键的条目映射到给定值时,才替换该键的条目。
boolean replace(K key, V oldValue, V newValue)
// 返回此映射中的键-值映射关系数。
int size()
// 返回此映射中包含的值的 Collection 视图。
Collection<V> values()

 

ConcurrentHashMap源码分析(JDK1.7.0_40版本)

ConcurrentHashMap.java的完整源码如下:

map remove多线程 多线程concurrenthashmap_sed_02

map remove多线程 多线程concurrenthashmap_map remove多线程_03

1 /*
   2  * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
   3  *
   4  *
   5  *
   6  *
   7  *
   8  *
   9  *
  10  *
  11  *
  12  *
  13  *
  14  *
  15  *
  16  *
  17  *
  18  *
  19  *
  20  *
  21  *
  22  *
  23  */
  24 
  25 /*
  26  *
  27  *
  28  *
  29  *
  30  *
  31  * Written by Doug Lea with assistance from members of JCP JSR-166
  32  * Expert Group and released to the public domain, as explained at
  33  * http://creativecommons.org/publicdomain/zero/1.0/
  34  */
  35 
  36 package java.util.concurrent;
  37 import java.util.concurrent.locks.*;
  38 import java.util.*;
  39 import java.io.Serializable;
  40 import java.io.IOException;
  41 import java.io.ObjectInputStream;
  42 import java.io.ObjectOutputStream;
  43 import java.io.ObjectStreamField;
  44 
  45 /**
  46  * A hash table supporting full concurrency of retrievals and
  47  * adjustable expected concurrency for updates. This class obeys the
  48  * same functional specification as {@link java.util.Hashtable}, and
  49  * includes versions of methods corresponding to each method of
  50  * <tt>Hashtable</tt>. However, even though all operations are
  51  * thread-safe, retrieval operations do <em>not</em> entail locking,
  52  * and there is <em>not</em> any support for locking the entire table
  53  * in a way that prevents all access.  This class is fully
  54  * interoperable with <tt>Hashtable</tt> in programs that rely on its
  55  * thread safety but not on its synchronization details.
  56  *
  57  * <p> Retrieval operations (including <tt>get</tt>) generally do not
  58  * block, so may overlap with update operations (including
  59  * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
  60  * of the most recently <em>completed</em> update operations holding
  61  * upon their onset.  For aggregate operations such as <tt>putAll</tt>
  62  * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
  63  * removal of only some entries.  Similarly, Iterators and
  64  * Enumerations return elements reflecting the state of the hash table
  65  * at some point at or since the creation of the iterator/enumeration.
  66  * They do <em>not</em> throw {@link ConcurrentModificationException}.
  67  * However, iterators are designed to be used by only one thread at a time.
  68  *
  69  * <p> The allowed concurrency among update operations is guided by
  70  * the optional <tt>concurrencyLevel</tt> constructor argument
  71  * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
  72  * table is internally partitioned to try to permit the indicated
  73  * number of concurrent updates without contention. Because placement
  74  * in hash tables is essentially random, the actual concurrency will
  75  * vary.  Ideally, you should choose a value to accommodate as many
  76  * threads as will ever concurrently modify the table. Using a
  77  * significantly higher value than you need can waste space and time,
  78  * and a significantly lower value can lead to thread contention. But
  79  * overestimates and underestimates within an order of magnitude do
  80  * not usually have much noticeable impact. A value of one is
  81  * appropriate when it is known that only one thread will modify and
  82  * all others will only read. Also, resizing this or any other kind of
  83  * hash table is a relatively slow operation, so, when possible, it is
  84  * a good idea to provide estimates of expected table sizes in
  85  * constructors.
  86  *
  87  * <p>This class and its views and iterators implement all of the
  88  * <em>optional</em> methods of the {@link Map} and {@link Iterator}
  89  * interfaces.
  90  *
  91  * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
  92  * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
  93  *
  94  * <p>This class is a member of the
  95  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
  96  * Java Collections Framework</a>.
  97  *
  98  * @since 1.5
  99  * @author Doug Lea
 100  * @param <K> the type of keys maintained by this map
 101  * @param <V> the type of mapped values
 102  */
 103 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
 104         implements ConcurrentMap<K, V>, Serializable {
 105     private static final long serialVersionUID = 7249069246763182397L;
 106 
 107     /*
 108      * The basic strategy is to subdivide the table among Segments,
 109      * each of which itself is a concurrently readable hash table.  To
 110      * reduce footprint, all but one segments are constructed only
 111      * when first needed (see ensureSegment). To maintain visibility
 112      * in the presence of lazy construction, accesses to segments as
 113      * well as elements of segment's table must use volatile access,
 114      * which is done via Unsafe within methods segmentAt etc
 115      * below. These provide the functionality of AtomicReferenceArrays
 116      * but reduce the levels of indirection. Additionally,
 117      * volatile-writes of table elements and entry "next" fields
 118      * within locked operations use the cheaper "lazySet" forms of
 119      * writes (via putOrderedObject) because these writes are always
 120      * followed by lock releases that maintain sequential consistency
 121      * of table updates.
 122      *
 123      * Historical note: The previous version of this class relied
 124      * heavily on "final" fields, which avoided some volatile reads at
 125      * the expense of a large initial footprint.  Some remnants of
 126      * that design (including forced construction of segment 0) exist
 127      * to ensure serialization compatibility.
 128      */
 129 
 130     /* ---------------- Constants -------------- */
 131 
 132     /**
 133      * The default initial capacity for this table,
 134      * used when not otherwise specified in a constructor.
 135      */
 136     static final int DEFAULT_INITIAL_CAPACITY = 16;
 137 
 138     /**
 139      * The default load factor for this table, used when not
 140      * otherwise specified in a constructor.
 141      */
 142     static final float DEFAULT_LOAD_FACTOR = 0.75f;
 143 
 144     /**
 145      * The default concurrency level for this table, used when not
 146      * otherwise specified in a constructor.
 147      */
 148     static final int DEFAULT_CONCURRENCY_LEVEL = 16;
 149 
 150     /**
 151      * The maximum capacity, used if a higher value is implicitly
 152      * specified by either of the constructors with arguments.  MUST
 153      * be a power of two <= 1<<30 to ensure that entries are indexable
 154      * using ints.
 155      */
 156     static final int MAXIMUM_CAPACITY = 1 << 30;
 157 
 158     /**
 159      * The minimum capacity for per-segment tables.  Must be a power
 160      * of two, at least two to avoid immediate resizing on next use
 161      * after lazy construction.
 162      */
 163     static final int MIN_SEGMENT_TABLE_CAPACITY = 2;
 164 
 165     /**
 166      * The maximum number of segments to allow; used to bound
 167      * constructor arguments. Must be power of two less than 1 << 24.
 168      */
 169     static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
 170 
 171     /**
 172      * Number of unsynchronized retries in size and containsValue
 173      * methods before resorting to locking. This is used to avoid
 174      * unbounded retries if tables undergo continuous modification
 175      * which would make it impossible to obtain an accurate result.
 176      */
 177     static final int RETRIES_BEFORE_LOCK = 2;
 178 
 179     /* ---------------- Fields -------------- */
 180 
 181     /**
 182      * holds values which can't be initialized until after VM is booted.
 183      */
 184     private static class Holder {
 185 
 186         /**
 187         * Enable alternative hashing of String keys?
 188         *
 189         * <p>Unlike the other hash map implementations we do not implement a
 190         * threshold for regulating whether alternative hashing is used for
 191         * String keys. Alternative hashing is either enabled for all instances
 192         * or disabled for all instances.
 193         */
 194         static final boolean ALTERNATIVE_HASHING;
 195 
 196         static {
 197             // Use the "threshold" system property even though our threshold
 198             // behaviour is "ON" or "OFF".
 199             String altThreshold = java.security.AccessController.doPrivileged(
 200                 new sun.security.action.GetPropertyAction(
 201                     "jdk.map.althashing.threshold"));
 202 
 203             int threshold;
 204             try {
 205                 threshold = (null != altThreshold)
 206                         ? Integer.parseInt(altThreshold)
 207                         : Integer.MAX_VALUE;
 208 
 209                 // disable alternative hashing if -1
 210                 if (threshold == -1) {
 211                     threshold = Integer.MAX_VALUE;
 212                 }
 213 
 214                 if (threshold < 0) {
 215                     throw new IllegalArgumentException("value must be positive integer.");
 216                 }
 217             } catch(IllegalArgumentException failed) {
 218                 throw new Error("Illegal value for 'jdk.map.althashing.threshold'", failed);
 219             }
 220             ALTERNATIVE_HASHING = threshold <= MAXIMUM_CAPACITY;
 221         }
 222     }
 223 
 224     /**
 225      * A randomizing value associated with this instance that is applied to
 226      * hash code of keys to make hash collisions harder to find.
 227      */
 228     private transient final int hashSeed = randomHashSeed(this);
 229 
 230     private static int randomHashSeed(ConcurrentHashMap instance) {
 231         if (sun.misc.VM.isBooted() && Holder.ALTERNATIVE_HASHING) {
 232             return sun.misc.Hashing.randomHashSeed(instance);
 233         }
 234 
 235         return 0;
 236     }
 237 
 238     /**
 239      * Mask value for indexing into segments. The upper bits of a
 240      * key's hash code are used to choose the segment.
 241      */
 242     final int segmentMask;
 243 
 244     /**
 245      * Shift value for indexing within segments.
 246      */
 247     final int segmentShift;
 248 
 249     /**
 250      * The segments, each of which is a specialized hash table.
 251      */
 252     final Segment<K,V>[] segments;
 253 
 254     transient Set<K> keySet;
 255     transient Set<Map.Entry<K,V>> entrySet;
 256     transient Collection<V> values;
 257 
 258     /**
 259      * ConcurrentHashMap list entry. Note that this is never exported
 260      * out as a user-visible Map.Entry.
 261      */
 262     static final class HashEntry<K,V> {
 263         final int hash;
 264         final K key;
 265         volatile V value;
 266         volatile HashEntry<K,V> next;
 267 
 268         HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
 269             this.hash = hash;
 270             this.key = key;
 271             this.value = value;
 272             this.next = next;
 273         }
 274 
 275         /**
 276          * Sets next field with volatile write semantics.  (See above
 277          * about use of putOrderedObject.)
 278          */
 279         final void setNext(HashEntry<K,V> n) {
 280             UNSAFE.putOrderedObject(this, nextOffset, n);
 281         }
 282 
 283         // Unsafe mechanics
 284         static final sun.misc.Unsafe UNSAFE;
 285         static final long nextOffset;
 286         static {
 287             try {
 288                 UNSAFE = sun.misc.Unsafe.getUnsafe();
 289                 Class k = HashEntry.class;
 290                 nextOffset = UNSAFE.objectFieldOffset
 291                     (k.getDeclaredField("next"));
 292             } catch (Exception e) {
 293                 throw new Error(e);
 294             }
 295         }
 296     }
 297 
 298     /**
 299      * Gets the ith element of given table (if nonnull) with volatile
 300      * read semantics. Note: This is manually integrated into a few
 301      * performance-sensitive methods to reduce call overhead.
 302      */
 303     @SuppressWarnings("unchecked")
 304     static final <K,V> HashEntry<K,V> entryAt(HashEntry<K,V>[] tab, int i) {
 305         return (tab == null) ? null :
 306             (HashEntry<K,V>) UNSAFE.getObjectVolatile
 307             (tab, ((long)i << TSHIFT) + TBASE);
 308     }
 309 
 310     /**
 311      * Sets the ith element of given table, with volatile write
 312      * semantics. (See above about use of putOrderedObject.)
 313      */
 314     static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,
 315                                        HashEntry<K,V> e) {
 316         UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
 317     }
 318 
 319     /**
 320      * Applies a supplemental hash function to a given hashCode, which
 321      * defends against poor quality hash functions.  This is critical
 322      * because ConcurrentHashMap uses power-of-two length hash tables,
 323      * that otherwise encounter collisions for hashCodes that do not
 324      * differ in lower or upper bits.
 325      */
 326     private int hash(Object k) {
 327         int h = hashSeed;
 328 
 329         if ((0 != h) && (k instanceof String)) {
 330             return sun.misc.Hashing.stringHash32((String) k);
 331         }
 332 
 333         h ^= k.hashCode();
 334 
 335         // Spread bits to regularize both segment and index locations,
 336         // using variant of single-word Wang/Jenkins hash.
 337         h += (h <<  15) ^ 0xffffcd7d;
 338         h ^= (h >>> 10);
 339         h += (h <<   3);
 340         h ^= (h >>>  6);
 341         h += (h <<   2) + (h << 14);
 342         return h ^ (h >>> 16);
 343     }
 344 
 345     /**
 346      * Segments are specialized versions of hash tables.  This
 347      * subclasses from ReentrantLock opportunistically, just to
 348      * simplify some locking and avoid separate construction.
 349      */
 350     static final class Segment<K,V> extends ReentrantLock implements Serializable {
 351         /*
 352          * Segments maintain a table of entry lists that are always
 353          * kept in a consistent state, so can be read (via volatile
 354          * reads of segments and tables) without locking.  This
 355          * requires replicating nodes when necessary during table
 356          * resizing, so the old lists can be traversed by readers
 357          * still using old version of table.
 358          *
 359          * This class defines only mutative methods requiring locking.
 360          * Except as noted, the methods of this class perform the
 361          * per-segment versions of ConcurrentHashMap methods.  (Other
 362          * methods are integrated directly into ConcurrentHashMap
 363          * methods.) These mutative methods use a form of controlled
 364          * spinning on contention via methods scanAndLock and
 365          * scanAndLockForPut. These intersperse tryLocks with
 366          * traversals to locate nodes.  The main benefit is to absorb
 367          * cache misses (which are very common for hash tables) while
 368          * obtaining locks so that traversal is faster once
 369          * acquired. We do not actually use the found nodes since they
 370          * must be re-acquired under lock anyway to ensure sequential
 371          * consistency of updates (and in any case may be undetectably
 372          * stale), but they will normally be much faster to re-locate.
 373          * Also, scanAndLockForPut speculatively creates a fresh node
 374          * to use in put if no node is found.
 375          */
 376 
 377         private static final long serialVersionUID = 2249069246763182397L;
 378 
 379         /**
 380          * The maximum number of times to tryLock in a prescan before
 381          * possibly blocking on acquire in preparation for a locked
 382          * segment operation. On multiprocessors, using a bounded
 383          * number of retries maintains cache acquired while locating
 384          * nodes.
 385          */
 386         static final int MAX_SCAN_RETRIES =
 387             Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
 388 
 389         /**
 390          * The per-segment table. Elements are accessed via
 391          * entryAt/setEntryAt providing volatile semantics.
 392          */
 393         transient volatile HashEntry<K,V>[] table;
 394 
 395         /**
 396          * The number of elements. Accessed only either within locks
 397          * or among other volatile reads that maintain visibility.
 398          */
 399         transient int count;
 400 
 401         /**
 402          * The total number of mutative operations in this segment.
 403          * Even though this may overflows 32 bits, it provides
 404          * sufficient accuracy for stability checks in CHM isEmpty()
 405          * and size() methods.  Accessed only either within locks or
 406          * among other volatile reads that maintain visibility.
 407          */
 408         transient int modCount;
 409 
 410         /**
 411          * The table is rehashed when its size exceeds this threshold.
 412          * (The value of this field is always <tt>(int)(capacity *
 413          * loadFactor)</tt>.)
 414          */
 415         transient int threshold;
 416 
 417         /**
 418          * The load factor for the hash table.  Even though this value
 419          * is same for all segments, it is replicated to avoid needing
 420          * links to outer object.
 421          * @serial
 422          */
 423         final float loadFactor;
 424 
 425         Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
 426             this.loadFactor = lf;
 427             this.threshold = threshold;
 428             this.table = tab;
 429         }
 430 
 431         final V put(K key, int hash, V value, boolean onlyIfAbsent) {
 432             HashEntry<K,V> node = tryLock() ? null :
 433                 scanAndLockForPut(key, hash, value);
 434             V oldValue;
 435             try {
 436                 HashEntry<K,V>[] tab = table;
 437                 int index = (tab.length - 1) & hash;
 438                 HashEntry<K,V> first = entryAt(tab, index);
 439                 for (HashEntry<K,V> e = first;;) {
 440                     if (e != null) {
 441                         K k;
 442                         if ((k = e.key) == key ||
 443                             (e.hash == hash && key.equals(k))) {
 444                             oldValue = e.value;
 445                             if (!onlyIfAbsent) {
 446                                 e.value = value;
 447                                 ++modCount;
 448                             }
 449                             break;
 450                         }
 451                         e = e.next;
 452                     }
 453                     else {
 454                         if (node != null)
 455                             node.setNext(first);
 456                         else
 457                             node = new HashEntry<K,V>(hash, key, value, first);
 458                         int c = count + 1;
 459                         if (c > threshold && tab.length < MAXIMUM_CAPACITY)
 460                             rehash(node);
 461                         else
 462                             setEntryAt(tab, index, node);
 463                         ++modCount;
 464                         count = c;
 465                         oldValue = null;
 466                         break;
 467                     }
 468                 }
 469             } finally {
 470                 unlock();
 471             }
 472             return oldValue;
 473         }
 474 
 475         /**
 476          * Doubles size of table and repacks entries, also adding the
 477          * given node to new table
 478          */
 479         @SuppressWarnings("unchecked")
 480         private void rehash(HashEntry<K,V> node) {
 481             /*
 482              * Reclassify nodes in each list to new table.  Because we
 483              * are using power-of-two expansion, the elements from
 484              * each bin must either stay at same index, or move with a
 485              * power of two offset. We eliminate unnecessary node
 486              * creation by catching cases where old nodes can be
 487              * reused because their next fields won't change.
 488              * Statistically, at the default threshold, only about
 489              * one-sixth of them need cloning when a table
 490              * doubles. The nodes they replace will be garbage
 491              * collectable as soon as they are no longer referenced by
 492              * any reader thread that may be in the midst of
 493              * concurrently traversing table. Entry accesses use plain
 494              * array indexing because they are followed by volatile
 495              * table write.
 496              */
 497             HashEntry<K,V>[] oldTable = table;
 498             int oldCapacity = oldTable.length;
 499             int newCapacity = oldCapacity << 1;
 500             threshold = (int)(newCapacity * loadFactor);
 501             HashEntry<K,V>[] newTable =
 502                 (HashEntry<K,V>[]) new HashEntry[newCapacity];
 503             int sizeMask = newCapacity - 1;
 504             for (int i = 0; i < oldCapacity ; i++) {
 505                 HashEntry<K,V> e = oldTable[i];
 506                 if (e != null) {
 507                     HashEntry<K,V> next = e.next;
 508                     int idx = e.hash & sizeMask;
 509                     if (next == null)   //  Single node on list
 510                         newTable[idx] = e;
 511                     else { // Reuse consecutive sequence at same slot
 512                         HashEntry<K,V> lastRun = e;
 513                         int lastIdx = idx;
 514                         for (HashEntry<K,V> last = next;
 515                              last != null;
 516                              last = last.next) {
 517                             int k = last.hash & sizeMask;
 518                             if (k != lastIdx) {
 519                                 lastIdx = k;
 520                                 lastRun = last;
 521                             }
 522                         }
 523                         newTable[lastIdx] = lastRun;
 524                         // Clone remaining nodes
 525                         for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
 526                             V v = p.value;
 527                             int h = p.hash;
 528                             int k = h & sizeMask;
 529                             HashEntry<K,V> n = newTable[k];
 530                             newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
 531                         }
 532                     }
 533                 }
 534             }
 535             int nodeIndex = node.hash & sizeMask; // add the new node
 536             node.setNext(newTable[nodeIndex]);
 537             newTable[nodeIndex] = node;
 538             table = newTable;
 539         }
 540 
 541         /**
 542          * Scans for a node containing given key while trying to
 543          * acquire lock, creating and returning one if not found. Upon
 544          * return, guarantees that lock is held. UNlike in most
 545          * methods, calls to method equals are not screened: Since
 546          * traversal speed doesn't matter, we might as well help warm
 547          * up the associated code and accesses as well.
 548          *
 549          * @return a new node if key not found, else null
 550          */
 551         private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
 552             HashEntry<K,V> first = entryForHash(this, hash);
 553             HashEntry<K,V> e = first;
 554             HashEntry<K,V> node = null;
 555             int retries = -1; // negative while locating node
 556             while (!tryLock()) {
 557                 HashEntry<K,V> f; // to recheck first below
 558                 if (retries < 0) {
 559                     if (e == null) {
 560                         if (node == null) // speculatively create node
 561                             node = new HashEntry<K,V>(hash, key, value, null);
 562                         retries = 0;
 563                     }
 564                     else if (key.equals(e.key))
 565                         retries = 0;
 566                     else
 567                         e = e.next;
 568                 }
 569                 else if (++retries > MAX_SCAN_RETRIES) {
 570                     lock();
 571                     break;
 572                 }
 573                 else if ((retries & 1) == 0 &&
 574                          (f = entryForHash(this, hash)) != first) {
 575                     e = first = f; // re-traverse if entry changed
 576                     retries = -1;
 577                 }
 578             }
 579             return node;
 580         }
 581 
 582         /**
 583          * Scans for a node containing the given key while trying to
 584          * acquire lock for a remove or replace operation. Upon
 585          * return, guarantees that lock is held.  Note that we must
 586          * lock even if the key is not found, to ensure sequential
 587          * consistency of updates.
 588          */
 589         private void scanAndLock(Object key, int hash) {
 590             // similar to but simpler than scanAndLockForPut
 591             HashEntry<K,V> first = entryForHash(this, hash);
 592             HashEntry<K,V> e = first;
 593             int retries = -1;
 594             while (!tryLock()) {
 595                 HashEntry<K,V> f;
 596                 if (retries < 0) {
 597                     if (e == null || key.equals(e.key))
 598                         retries = 0;
 599                     else
 600                         e = e.next;
 601                 }
 602                 else if (++retries > MAX_SCAN_RETRIES) {
 603                     lock();
 604                     break;
 605                 }
 606                 else if ((retries & 1) == 0 &&
 607                          (f = entryForHash(this, hash)) != first) {
 608                     e = first = f;
 609                     retries = -1;
 610                 }
 611             }
 612         }
 613 
 614         /**
 615          * Remove; match on key only if value null, else match both.
 616          */
 617         final V remove(Object key, int hash, Object value) {
 618             if (!tryLock())
 619                 scanAndLock(key, hash);
 620             V oldValue = null;
 621             try {
 622                 HashEntry<K,V>[] tab = table;
 623                 int index = (tab.length - 1) & hash;
 624                 HashEntry<K,V> e = entryAt(tab, index);
 625                 HashEntry<K,V> pred = null;
 626                 while (e != null) {
 627                     K k;
 628                     HashEntry<K,V> next = e.next;
 629                     if ((k = e.key) == key ||
 630                         (e.hash == hash && key.equals(k))) {
 631                         V v = e.value;
 632                         if (value == null || value == v || value.equals(v)) {
 633                             if (pred == null)
 634                                 setEntryAt(tab, index, next);
 635                             else
 636                                 pred.setNext(next);
 637                             ++modCount;
 638                             --count;
 639                             oldValue = v;
 640                         }
 641                         break;
 642                     }
 643                     pred = e;
 644                     e = next;
 645                 }
 646             } finally {
 647                 unlock();
 648             }
 649             return oldValue;
 650         }
 651 
 652         final boolean replace(K key, int hash, V oldValue, V newValue) {
 653             if (!tryLock())
 654                 scanAndLock(key, hash);
 655             boolean replaced = false;
 656             try {
 657                 HashEntry<K,V> e;
 658                 for (e = entryForHash(this, hash); e != null; e = e.next) {
 659                     K k;
 660                     if ((k = e.key) == key ||
 661                         (e.hash == hash && key.equals(k))) {
 662                         if (oldValue.equals(e.value)) {
 663                             e.value = newValue;
 664                             ++modCount;
 665                             replaced = true;
 666                         }
 667                         break;
 668                     }
 669                 }
 670             } finally {
 671                 unlock();
 672             }
 673             return replaced;
 674         }
 675 
 676         final V replace(K key, int hash, V value) {
 677             if (!tryLock())
 678                 scanAndLock(key, hash);
 679             V oldValue = null;
 680             try {
 681                 HashEntry<K,V> e;
 682                 for (e = entryForHash(this, hash); e != null; e = e.next) {
 683                     K k;
 684                     if ((k = e.key) == key ||
 685                         (e.hash == hash && key.equals(k))) {
 686                         oldValue = e.value;
 687                         e.value = value;
 688                         ++modCount;
 689                         break;
 690                     }
 691                 }
 692             } finally {
 693                 unlock();
 694             }
 695             return oldValue;
 696         }
 697 
 698         final void clear() {
 699             lock();
 700             try {
 701                 HashEntry<K,V>[] tab = table;
 702                 for (int i = 0; i < tab.length ; i++)
 703                     setEntryAt(tab, i, null);
 704                 ++modCount;
 705                 count = 0;
 706             } finally {
 707                 unlock();
 708             }
 709         }
 710     }
 711 
 712     // Accessing segments
 713 
 714     /**
 715      * Gets the jth element of given segment array (if nonnull) with
 716      * volatile element access semantics via Unsafe. (The null check
 717      * can trigger harmlessly only during deserialization.) Note:
 718      * because each element of segments array is set only once (using
 719      * fully ordered writes), some performance-sensitive methods rely
 720      * on this method only as a recheck upon null reads.
 721      */
 722     @SuppressWarnings("unchecked")
 723     static final <K,V> Segment<K,V> segmentAt(Segment<K,V>[] ss, int j) {
 724         long u = (j << SSHIFT) + SBASE;
 725         return ss == null ? null :
 726             (Segment<K,V>) UNSAFE.getObjectVolatile(ss, u);
 727     }
 728 
 729     /**
 730      * Returns the segment for the given index, creating it and
 731      * recording in segment table (via CAS) if not already present.
 732      *
 733      * @param k the index
 734      * @return the segment
 735      */
 736     @SuppressWarnings("unchecked")
 737     private Segment<K,V> ensureSegment(int k) {
 738         final Segment<K,V>[] ss = this.segments;
 739         long u = (k << SSHIFT) + SBASE; // raw offset
 740         Segment<K,V> seg;
 741         if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
 742             Segment<K,V> proto = ss[0]; // use segment 0 as prototype
 743             int cap = proto.table.length;
 744             float lf = proto.loadFactor;
 745             int threshold = (int)(cap * lf);
 746             HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
 747             if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
 748                 == null) { // recheck
 749                 Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
 750                 while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
 751                        == null) {
 752                     if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
 753                         break;
 754                 }
 755             }
 756         }
 757         return seg;
 758     }
 759 
 760     // Hash-based segment and entry accesses
 761 
 762     /**
 763      * Get the segment for the given hash
 764      */
 765     @SuppressWarnings("unchecked")
 766     private Segment<K,V> segmentForHash(int h) {
 767         long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
 768         return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u);
 769     }
 770 
 771     /**
 772      * Gets the table entry for the given segment and hash
 773      */
 774     @SuppressWarnings("unchecked")
 775     static final <K,V> HashEntry<K,V> entryForHash(Segment<K,V> seg, int h) {
 776         HashEntry<K,V>[] tab;
 777         return (seg == null || (tab = seg.table) == null) ? null :
 778             (HashEntry<K,V>) UNSAFE.getObjectVolatile
 779             (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
 780     }
 781 
 782     /* ---------------- Public operations -------------- */
 783 
 784     /**
 785      * Creates a new, empty map with the specified initial
 786      * capacity, load factor and concurrency level.
 787      *
 788      * @param initialCapacity the initial capacity. The implementation
 789      * performs internal sizing to accommodate this many elements.
 790      * @param loadFactor  the load factor threshold, used to control resizing.
 791      * Resizing may be performed when the average number of elements per
 792      * bin exceeds this threshold.
 793      * @param concurrencyLevel the estimated number of concurrently
 794      * updating threads. The implementation performs internal sizing
 795      * to try to accommodate this many threads.
 796      * @throws IllegalArgumentException if the initial capacity is
 797      * negative or the load factor or concurrencyLevel are
 798      * nonpositive.
 799      */
 800     @SuppressWarnings("unchecked")
 801     public ConcurrentHashMap(int initialCapacity,
 802                              float loadFactor, int concurrencyLevel) {
 803         if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
 804             throw new IllegalArgumentException();
 805         if (concurrencyLevel > MAX_SEGMENTS)
 806             concurrencyLevel = MAX_SEGMENTS;
 807         // Find power-of-two sizes best matching arguments
 808         int sshift = 0;
 809         int ssize = 1;
 810         while (ssize < concurrencyLevel) {
 811             ++sshift;
 812             ssize <<= 1;
 813         }
 814         this.segmentShift = 32 - sshift;
 815         this.segmentMask = ssize - 1;
 816         if (initialCapacity > MAXIMUM_CAPACITY)
 817             initialCapacity = MAXIMUM_CAPACITY;
 818         int c = initialCapacity / ssize;
 819         if (c * ssize < initialCapacity)
 820             ++c;
 821         int cap = MIN_SEGMENT_TABLE_CAPACITY;
 822         while (cap < c)
 823             cap <<= 1;
 824         // create segments and segments[0]
 825         Segment<K,V> s0 =
 826             new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
 827                              (HashEntry<K,V>[])new HashEntry[cap]);
 828         Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
 829         UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
 830         this.segments = ss;
 831     }
 832 
 833     /**
 834      * Creates a new, empty map with the specified initial capacity
 835      * and load factor and with the default concurrencyLevel (16).
 836      *
 837      * @param initialCapacity The implementation performs internal
 838      * sizing to accommodate this many elements.
 839      * @param loadFactor  the load factor threshold, used to control resizing.
 840      * Resizing may be performed when the average number of elements per
 841      * bin exceeds this threshold.
 842      * @throws IllegalArgumentException if the initial capacity of
 843      * elements is negative or the load factor is nonpositive
 844      *
 845      * @since 1.6
 846      */
 847     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
 848         this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
 849     }
 850 
 851     /**
 852      * Creates a new, empty map with the specified initial capacity,
 853      * and with default load factor (0.75) and concurrencyLevel (16).
 854      *
 855      * @param initialCapacity the initial capacity. The implementation
 856      * performs internal sizing to accommodate this many elements.
 857      * @throws IllegalArgumentException if the initial capacity of
 858      * elements is negative.
 859      */
 860     public ConcurrentHashMap(int initialCapacity) {
 861         this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
 862     }
 863 
 864     /**
 865      * Creates a new, empty map with a default initial capacity (16),
 866      * load factor (0.75) and concurrencyLevel (16).
 867      */
 868     public ConcurrentHashMap() {
 869         this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
 870     }
 871 
 872     /**
 873      * Creates a new map with the same mappings as the given map.
 874      * The map is created with a capacity of 1.5 times the number
 875      * of mappings in the given map or 16 (whichever is greater),
 876      * and a default load factor (0.75) and concurrencyLevel (16).
 877      *
 878      * @param m the map
 879      */
 880     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
 881         this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
 882                       DEFAULT_INITIAL_CAPACITY),
 883              DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
 884         putAll(m);
 885     }
 886 
 887     /**
 888      * Returns <tt>true</tt> if this map contains no key-value mappings.
 889      *
 890      * @return <tt>true</tt> if this map contains no key-value mappings
 891      */
 892     public boolean isEmpty() {
 893         /*
 894          * Sum per-segment modCounts to avoid mis-reporting when
 895          * elements are concurrently added and removed in one segment
 896          * while checking another, in which case the table was never
 897          * actually empty at any point. (The sum ensures accuracy up
 898          * through at least 1<<31 per-segment modifications before
 899          * recheck.)  Methods size() and containsValue() use similar
 900          * constructions for stability checks.
 901          */
 902         long sum = 0L;
 903         final Segment<K,V>[] segments = this.segments;
 904         for (int j = 0; j < segments.length; ++j) {
 905             Segment<K,V> seg = segmentAt(segments, j);
 906             if (seg != null) {
 907                 if (seg.count != 0)
 908                     return false;
 909                 sum += seg.modCount;
 910             }
 911         }
 912         if (sum != 0L) { // recheck unless no modifications
 913             for (int j = 0; j < segments.length; ++j) {
 914                 Segment<K,V> seg = segmentAt(segments, j);
 915                 if (seg != null) {
 916                     if (seg.count != 0)
 917                         return false;
 918                     sum -= seg.modCount;
 919                 }
 920             }
 921             if (sum != 0L)
 922                 return false;
 923         }
 924         return true;
 925     }
 926 
 927     /**
 928      * Returns the number of key-value mappings in this map.  If the
 929      * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
 930      * <tt>Integer.MAX_VALUE</tt>.
 931      *
 932      * @return the number of key-value mappings in this map
 933      */
 934     public int size() {
 935         // Try a few times to get accurate count. On failure due to
 936         // continuous async changes in table, resort to locking.
 937         final Segment<K,V>[] segments = this.segments;
 938         int size;
 939         boolean overflow; // true if size overflows 32 bits
 940         long sum;         // sum of modCounts
 941         long last = 0L;   // previous sum
 942         int retries = -1; // first iteration isn't retry
 943         try {
 944             for (;;) {
 945                 if (retries++ == RETRIES_BEFORE_LOCK) {
 946                     for (int j = 0; j < segments.length; ++j)
 947                         ensureSegment(j).lock(); // force creation
 948                 }
 949                 sum = 0L;
 950                 size = 0;
 951                 overflow = false;
 952                 for (int j = 0; j < segments.length; ++j) {
 953                     Segment<K,V> seg = segmentAt(segments, j);
 954                     if (seg != null) {
 955                         sum += seg.modCount;
 956                         int c = seg.count;
 957                         if (c < 0 || (size += c) < 0)
 958                             overflow = true;
 959                     }
 960                 }
 961                 if (sum == last)
 962                     break;
 963                 last = sum;
 964             }
 965         } finally {
 966             if (retries > RETRIES_BEFORE_LOCK) {
 967                 for (int j = 0; j < segments.length; ++j)
 968                     segmentAt(segments, j).unlock();
 969             }
 970         }
 971         return overflow ? Integer.MAX_VALUE : size;
 972     }
 973 
 974     /**
 975      * Returns the value to which the specified key is mapped,
 976      * or {@code null} if this map contains no mapping for the key.
 977      *
 978      * <p>More formally, if this map contains a mapping from a key
 979      * {@code k} to a value {@code v} such that {@code key.equals(k)},
 980      * then this method returns {@code v}; otherwise it returns
 981      * {@code null}.  (There can be at most one such mapping.)
 982      *
 983      * @throws NullPointerException if the specified key is null
 984      */
 985     public V get(Object key) {
 986         Segment<K,V> s; // manually integrate access methods to reduce overhead
 987         HashEntry<K,V>[] tab;
 988         int h = hash(key);
 989         long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
 990         if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
 991             (tab = s.table) != null) {
 992             for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
 993                      (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
 994                  e != null; e = e.next) {
 995                 K k;
 996                 if ((k = e.key) == key || (e.hash == h && key.equals(k)))
 997                     return e.value;
 998             }
 999         }
1000         return null;
1001     }
1002 
1003     /**
1004      * Tests if the specified object is a key in this table.
1005      *
1006      * @param  key   possible key
1007      * @return <tt>true</tt> if and only if the specified object
1008      *         is a key in this table, as determined by the
1009      *         <tt>equals</tt> method; <tt>false</tt> otherwise.
1010      * @throws NullPointerException if the specified key is null
1011      */
1012     @SuppressWarnings("unchecked")
1013     public boolean containsKey(Object key) {
1014         Segment<K,V> s; // same as get() except no need for volatile value read
1015         HashEntry<K,V>[] tab;
1016         int h = hash(key);
1017         long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
1018         if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
1019             (tab = s.table) != null) {
1020             for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
1021                      (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
1022                  e != null; e = e.next) {
1023                 K k;
1024                 if ((k = e.key) == key || (e.hash == h && key.equals(k)))
1025                     return true;
1026             }
1027         }
1028         return false;
1029     }
1030 
1031     /**
1032      * Returns <tt>true</tt> if this map maps one or more keys to the
1033      * specified value. Note: This method requires a full internal
1034      * traversal of the hash table, and so is much slower than
1035      * method <tt>containsKey</tt>.
1036      *
1037      * @param value value whose presence in this map is to be tested
1038      * @return <tt>true</tt> if this map maps one or more keys to the
1039      *         specified value
1040      * @throws NullPointerException if the specified value is null
1041      */
1042     public boolean containsValue(Object value) {
1043         // Same idea as size()
1044         if (value == null)
1045             throw new NullPointerException();
1046         final Segment<K,V>[] segments = this.segments;
1047         boolean found = false;
1048         long last = 0;
1049         int retries = -1;
1050         try {
1051             outer: for (;;) {
1052                 if (retries++ == RETRIES_BEFORE_LOCK) {
1053                     for (int j = 0; j < segments.length; ++j)
1054                         ensureSegment(j).lock(); // force creation
1055                 }
1056                 long hashSum = 0L;
1057                 int sum = 0;
1058                 for (int j = 0; j < segments.length; ++j) {
1059                     HashEntry<K,V>[] tab;
1060                     Segment<K,V> seg = segmentAt(segments, j);
1061                     if (seg != null && (tab = seg.table) != null) {
1062                         for (int i = 0 ; i < tab.length; i++) {
1063                             HashEntry<K,V> e;
1064                             for (e = entryAt(tab, i); e != null; e = e.next) {
1065                                 V v = e.value;
1066                                 if (v != null && value.equals(v)) {
1067                                     found = true;
1068                                     break outer;
1069                                 }
1070                             }
1071                         }
1072                         sum += seg.modCount;
1073                     }
1074                 }
1075                 if (retries > 0 && sum == last)
1076                     break;
1077                 last = sum;
1078             }
1079         } finally {
1080             if (retries > RETRIES_BEFORE_LOCK) {
1081                 for (int j = 0; j < segments.length; ++j)
1082                     segmentAt(segments, j).unlock();
1083             }
1084         }
1085         return found;
1086     }
1087 
1088     /**
1089      * Legacy method testing if some key maps into the specified value
1090      * in this table.  This method is identical in functionality to
1091      * {@link #containsValue}, and exists solely to ensure
1092      * full compatibility with class {@link java.util.Hashtable},
1093      * which supported this method prior to introduction of the
1094      * Java Collections framework.
1095 
1096      * @param  value a value to search for
1097      * @return <tt>true</tt> if and only if some key maps to the
1098      *         <tt>value</tt> argument in this table as
1099      *         determined by the <tt>equals</tt> method;
1100      *         <tt>false</tt> otherwise
1101      * @throws NullPointerException if the specified value is null
1102      */
1103     public boolean contains(Object value) {
1104         return containsValue(value);
1105     }
1106 
1107     /**
1108      * Maps the specified key to the specified value in this table.
1109      * Neither the key nor the value can be null.
1110      *
1111      * <p> The value can be retrieved by calling the <tt>get</tt> method
1112      * with a key that is equal to the original key.
1113      *
1114      * @param key key with which the specified value is to be associated
1115      * @param value value to be associated with the specified key
1116      * @return the previous value associated with <tt>key</tt>, or
1117      *         <tt>null</tt> if there was no mapping for <tt>key</tt>
1118      * @throws NullPointerException if the specified key or value is null
1119      */
1120     @SuppressWarnings("unchecked")
1121     public V put(K key, V value) {
1122         Segment<K,V> s;
1123         if (value == null)
1124             throw new NullPointerException();
1125         int hash = hash(key);
1126         int j = (hash >>> segmentShift) & segmentMask;
1127         if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
1128              (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
1129             s = ensureSegment(j);
1130         return s.put(key, hash, value, false);
1131     }
1132 
1133     /**
1134      * {@inheritDoc}
1135      *
1136      * @return the previous value associated with the specified key,
1137      *         or <tt>null</tt> if there was no mapping for the key
1138      * @throws NullPointerException if the specified key or value is null
1139      */
1140     @SuppressWarnings("unchecked")
1141     public V putIfAbsent(K key, V value) {
1142         Segment<K,V> s;
1143         if (value == null)
1144             throw new NullPointerException();
1145         int hash = hash(key);
1146         int j = (hash >>> segmentShift) & segmentMask;
1147         if ((s = (Segment<K,V>)UNSAFE.getObject
1148              (segments, (j << SSHIFT) + SBASE)) == null)
1149             s = ensureSegment(j);
1150         return s.put(key, hash, value, true);
1151     }
1152 
1153     /**
1154      * Copies all of the mappings from the specified map to this one.
1155      * These mappings replace any mappings that this map had for any of the
1156      * keys currently in the specified map.
1157      *
1158      * @param m mappings to be stored in this map
1159      */
1160     public void putAll(Map<? extends K, ? extends V> m) {
1161         for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1162             put(e.getKey(), e.getValue());
1163     }
1164 
1165     /**
1166      * Removes the key (and its corresponding value) from this map.
1167      * This method does nothing if the key is not in the map.
1168      *
1169      * @param  key the key that needs to be removed
1170      * @return the previous value associated with <tt>key</tt>, or
1171      *         <tt>null</tt> if there was no mapping for <tt>key</tt>
1172      * @throws NullPointerException if the specified key is null
1173      */
1174     public V remove(Object key) {
1175         int hash = hash(key);
1176         Segment<K,V> s = segmentForHash(hash);
1177         return s == null ? null : s.remove(key, hash, null);
1178     }
1179 
1180     /**
1181      * {@inheritDoc}
1182      *
1183      * @throws NullPointerException if the specified key is null
1184      */
1185     public boolean remove(Object key, Object value) {
1186         int hash = hash(key);
1187         Segment<K,V> s;
1188         return value != null && (s = segmentForHash(hash)) != null &&
1189             s.remove(key, hash, value) != null;
1190     }
1191 
1192     /**
1193      * {@inheritDoc}
1194      *
1195      * @throws NullPointerException if any of the arguments are null
1196      */
1197     public boolean replace(K key, V oldValue, V newValue) {
1198         int hash = hash(key);
1199         if (oldValue == null || newValue == null)
1200             throw new NullPointerException();
1201         Segment<K,V> s = segmentForHash(hash);
1202         return s != null && s.replace(key, hash, oldValue, newValue);
1203     }
1204 
1205     /**
1206      * {@inheritDoc}
1207      *
1208      * @return the previous value associated with the specified key,
1209      *         or <tt>null</tt> if there was no mapping for the key
1210      * @throws NullPointerException if the specified key or value is null
1211      */
1212     public V replace(K key, V value) {
1213         int hash = hash(key);
1214         if (value == null)
1215             throw new NullPointerException();
1216         Segment<K,V> s = segmentForHash(hash);
1217         return s == null ? null : s.replace(key, hash, value);
1218     }
1219 
1220     /**
1221      * Removes all of the mappings from this map.
1222      */
1223     public void clear() {
1224         final Segment<K,V>[] segments = this.segments;
1225         for (int j = 0; j < segments.length; ++j) {
1226             Segment<K,V> s = segmentAt(segments, j);
1227             if (s != null)
1228                 s.clear();
1229         }
1230     }
1231 
1232     /**
1233      * Returns a {@link Set} view of the keys contained in this map.
1234      * The set is backed by the map, so changes to the map are
1235      * reflected in the set, and vice-versa.  The set supports element
1236      * removal, which removes the corresponding mapping from this map,
1237      * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1238      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1239      * operations.  It does not support the <tt>add</tt> or
1240      * <tt>addAll</tt> operations.
1241      *
1242      * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1243      * that will never throw {@link ConcurrentModificationException},
1244      * and guarantees to traverse elements as they existed upon
1245      * construction of the iterator, and may (but is not guaranteed to)
1246      * reflect any modifications subsequent to construction.
1247      */
1248     public Set<K> keySet() {
1249         Set<K> ks = keySet;
1250         return (ks != null) ? ks : (keySet = new KeySet());
1251     }
1252 
1253     /**
1254      * Returns a {@link Collection} view of the values contained in this map.
1255      * The collection is backed by the map, so changes to the map are
1256      * reflected in the collection, and vice-versa.  The collection
1257      * supports element removal, which removes the corresponding
1258      * mapping from this map, via the <tt>Iterator.remove</tt>,
1259      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1260      * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
1261      * support the <tt>add</tt> or <tt>addAll</tt> operations.
1262      *
1263      * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1264      * that will never throw {@link ConcurrentModificationException},
1265      * and guarantees to traverse elements as they existed upon
1266      * construction of the iterator, and may (but is not guaranteed to)
1267      * reflect any modifications subsequent to construction.
1268      */
1269     public Collection<V> values() {
1270         Collection<V> vs = values;
1271         return (vs != null) ? vs : (values = new Values());
1272     }
1273 
1274     /**
1275      * Returns a {@link Set} view of the mappings contained in this map.
1276      * The set is backed by the map, so changes to the map are
1277      * reflected in the set, and vice-versa.  The set supports element
1278      * removal, which removes the corresponding mapping from the map,
1279      * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1280      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1281      * operations.  It does not support the <tt>add</tt> or
1282      * <tt>addAll</tt> operations.
1283      *
1284      * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1285      * that will never throw {@link ConcurrentModificationException},
1286      * and guarantees to traverse elements as they existed upon
1287      * construction of the iterator, and may (but is not guaranteed to)
1288      * reflect any modifications subsequent to construction.
1289      */
1290     public Set<Map.Entry<K,V>> entrySet() {
1291         Set<Map.Entry<K,V>> es = entrySet;
1292         return (es != null) ? es : (entrySet = new EntrySet());
1293     }
1294 
1295     /**
1296      * Returns an enumeration of the keys in this table.
1297      *
1298      * @return an enumeration of the keys in this table
1299      * @see #keySet()
1300      */
1301     public Enumeration<K> keys() {
1302         return new KeyIterator();
1303     }
1304 
1305     /**
1306      * Returns an enumeration of the values in this table.
1307      *
1308      * @return an enumeration of the values in this table
1309      * @see #values()
1310      */
1311     public Enumeration<V> elements() {
1312         return new ValueIterator();
1313     }
1314 
1315     /* ---------------- Iterator Support -------------- */
1316 
1317     abstract class HashIterator {
1318         int nextSegmentIndex;
1319         int nextTableIndex;
1320         HashEntry<K,V>[] currentTable;
1321         HashEntry<K, V> nextEntry;
1322         HashEntry<K, V> lastReturned;
1323 
1324         HashIterator() {
1325             nextSegmentIndex = segments.length - 1;
1326             nextTableIndex = -1;
1327             advance();
1328         }
1329 
1330         /**
1331          * Set nextEntry to first node of next non-empty table
1332          * (in backwards order, to simplify checks).
1333          */
1334         final void advance() {
1335             for (;;) {
1336                 if (nextTableIndex >= 0) {
1337                     if ((nextEntry = entryAt(currentTable,
1338                                              nextTableIndex--)) != null)
1339                         break;
1340                 }
1341                 else if (nextSegmentIndex >= 0) {
1342                     Segment<K,V> seg = segmentAt(segments, nextSegmentIndex--);
1343                     if (seg != null && (currentTable = seg.table) != null)
1344                         nextTableIndex = currentTable.length - 1;
1345                 }
1346                 else
1347                     break;
1348             }
1349         }
1350 
1351         final HashEntry<K,V> nextEntry() {
1352             HashEntry<K,V> e = nextEntry;
1353             if (e == null)
1354                 throw new NoSuchElementException();
1355             lastReturned = e; // cannot assign until after null check
1356             if ((nextEntry = e.next) == null)
1357                 advance();
1358             return e;
1359         }
1360 
1361         public final boolean hasNext() { return nextEntry != null; }
1362         public final boolean hasMoreElements() { return nextEntry != null; }
1363 
1364         public final void remove() {
1365             if (lastReturned == null)
1366                 throw new IllegalStateException();
1367             ConcurrentHashMap.this.remove(lastReturned.key);
1368             lastReturned = null;
1369         }
1370     }
1371 
1372     final class KeyIterator
1373         extends HashIterator
1374         implements Iterator<K>, Enumeration<K>
1375     {
1376         public final K next()        { return super.nextEntry().key; }
1377         public final K nextElement() { return super.nextEntry().key; }
1378     }
1379 
1380     final class ValueIterator
1381         extends HashIterator
1382         implements Iterator<V>, Enumeration<V>
1383     {
1384         public final V next()        { return super.nextEntry().value; }
1385         public final V nextElement() { return super.nextEntry().value; }
1386     }
1387 
1388     /**
1389      * Custom Entry class used by EntryIterator.next(), that relays
1390      * setValue changes to the underlying map.
1391      */
1392     final class WriteThroughEntry
1393         extends AbstractMap.SimpleEntry<K,V>
1394     {
1395         WriteThroughEntry(K k, V v) {
1396             super(k,v);
1397         }
1398 
1399         /**
1400          * Set our entry's value and write through to the map. The
1401          * value to return is somewhat arbitrary here. Since a
1402          * WriteThroughEntry does not necessarily track asynchronous
1403          * changes, the most recent "previous" value could be
1404          * different from what we return (or could even have been
1405          * removed in which case the put will re-establish). We do not
1406          * and cannot guarantee more.
1407          */
1408         public V setValue(V value) {
1409             if (value == null) throw new NullPointerException();
1410             V v = super.setValue(value);
1411             ConcurrentHashMap.this.put(getKey(), value);
1412             return v;
1413         }
1414     }
1415 
1416     final class EntryIterator
1417         extends HashIterator
1418         implements Iterator<Entry<K,V>>
1419     {
1420         public Map.Entry<K,V> next() {
1421             HashEntry<K,V> e = super.nextEntry();
1422             return new WriteThroughEntry(e.key, e.value);
1423         }
1424     }
1425 
1426     final class KeySet extends AbstractSet<K> {
1427         public Iterator<K> iterator() {
1428             return new KeyIterator();
1429         }
1430         public int size() {
1431             return ConcurrentHashMap.this.size();
1432         }
1433         public boolean isEmpty() {
1434             return ConcurrentHashMap.this.isEmpty();
1435         }
1436         public boolean contains(Object o) {
1437             return ConcurrentHashMap.this.containsKey(o);
1438         }
1439         public boolean remove(Object o) {
1440             return ConcurrentHashMap.this.remove(o) != null;
1441         }
1442         public void clear() {
1443             ConcurrentHashMap.this.clear();
1444         }
1445     }
1446 
1447     final class Values extends AbstractCollection<V> {
1448         public Iterator<V> iterator() {
1449             return new ValueIterator();
1450         }
1451         public int size() {
1452             return ConcurrentHashMap.this.size();
1453         }
1454         public boolean isEmpty() {
1455             return ConcurrentHashMap.this.isEmpty();
1456         }
1457         public boolean contains(Object o) {
1458             return ConcurrentHashMap.this.containsValue(o);
1459         }
1460         public void clear() {
1461             ConcurrentHashMap.this.clear();
1462         }
1463     }
1464 
1465     final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1466         public Iterator<Map.Entry<K,V>> iterator() {
1467             return new EntryIterator();
1468         }
1469         public boolean contains(Object o) {
1470             if (!(o instanceof Map.Entry))
1471                 return false;
1472             Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1473             V v = ConcurrentHashMap.this.get(e.getKey());
1474             return v != null && v.equals(e.getValue());
1475         }
1476         public boolean remove(Object o) {
1477             if (!(o instanceof Map.Entry))
1478                 return false;
1479             Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1480             return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1481         }
1482         public int size() {
1483             return ConcurrentHashMap.this.size();
1484         }
1485         public boolean isEmpty() {
1486             return ConcurrentHashMap.this.isEmpty();
1487         }
1488         public void clear() {
1489             ConcurrentHashMap.this.clear();
1490         }
1491     }
1492 
1493     /* ---------------- Serialization Support -------------- */
1494 
1495     /**
1496      * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
1497      * stream (i.e., serialize it).
1498      * @param s the stream
1499      * @serialData
1500      * the key (Object) and value (Object)
1501      * for each key-value mapping, followed by a null pair.
1502      * The key-value mappings are emitted in no particular order.
1503      */
1504     private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1505         // force all segments for serialization compatibility
1506         for (int k = 0; k < segments.length; ++k)
1507             ensureSegment(k);
1508         s.defaultWriteObject();
1509 
1510         final Segment<K,V>[] segments = this.segments;
1511         for (int k = 0; k < segments.length; ++k) {
1512             Segment<K,V> seg = segmentAt(segments, k);
1513             seg.lock();
1514             try {
1515                 HashEntry<K,V>[] tab = seg.table;
1516                 for (int i = 0; i < tab.length; ++i) {
1517                     HashEntry<K,V> e;
1518                     for (e = entryAt(tab, i); e != null; e = e.next) {
1519                         s.writeObject(e.key);
1520                         s.writeObject(e.value);
1521                     }
1522                 }
1523             } finally {
1524                 seg.unlock();
1525             }
1526         }
1527         s.writeObject(null);
1528         s.writeObject(null);
1529     }
1530 
1531

View Code

 

下面从ConcurrentHashMap的创建,获取,添加,删除这4个方面对ConcurrentHashMap进行分析。

1 创建

下面以ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel)来进行说明。

@SuppressWarnings("unchecked")
public ConcurrentHashMap(int initialCapacity,
                         float loadFactor, int concurrencyLevel) {
    // 参数有效性判断
    if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
        throw new IllegalArgumentException();
    // concurrencyLevel是“用来计算segments的容量”
    if (concurrencyLevel > MAX_SEGMENTS)
        concurrencyLevel = MAX_SEGMENTS;
    int sshift = 0;
    int ssize = 1;
    // ssize=“大于或等于concurrencyLevel的最小的2的N次方值”
    while (ssize < concurrencyLevel) {
        ++sshift;
        ssize <<= 1;
    }
    // 初始化segmentShift和segmentMask
    this.segmentShift = 32 - sshift;
    this.segmentMask = ssize - 1;
    // 哈希表的初始容量
    // 哈希表的实际容量=“segments的容量” x “segments中数组的长度”
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    // “哈希表的初始容量” / “segments的容量”
    int c = initialCapacity / ssize;
    if (c * ssize < initialCapacity)
        ++c;
    // cap就是“segments中的HashEntry数组的长度”
    int cap = MIN_SEGMENT_TABLE_CAPACITY;
    while (cap < c)
        cap <<= 1;
    // segments
    Segment<K,V> s0 =
        new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                         (HashEntry<K,V>[])new HashEntry[cap]);
    Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
    UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
    this.segments = ss;
}

说明
(01) 前面我们说过,ConcurrentHashMap采用了“锁分段”技术;在代码中,它通过“segments数组”对象来保存各个分段。segments的定义如下:

final Segment<K,V>[] segments;

    concurrencyLevel的作用就是用来计算segments数组的容量大小。先计算出“大于或等于concurrencyLevel的最小的2的N次方值”,然后将其保存为“segments的容量大小(ssize)”。
(02) initialCapacity是哈希表的初始容量。需要注意的是,哈希表的实际容量=“segments的容量” x “segments中数组的长度”。
(03) loadFactor是加载因子。它是哈希表在其容量自动增加之前可以达到多满的一种尺度。

ConcurrentHashMap的构造函数中涉及到的非常重要的一个结构体,它就是Segment。下面看看Segment的声明:

static final class Segment<K,V> extends ReentrantLock implements Serializable {
    ...

    transient volatile HashEntry<K,V>[] table;
    // threshold阈,是哈希表在其容量自动增加之前可以达到多满的一种尺度。
    transient int threshold;
    // loadFactor是加载因子
    final float loadFactor;

    Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
        this.loadFactor = lf;
        this.threshold = threshold;
        this.table = tab;
    }

    ...
}

说明:Segment包含HashEntry数组,HashEntry保存了哈希表中的键值对。
此外,还需要说明的Segment继承于ReentrantLock。这意味着,Segment本质上就是可重入的互斥锁。

HashEntry的源码如下:

static final class HashEntry<K,V> {
    final int hash;    // 哈希值
    final K key;       // 键
    volatile V value;  // 值
    volatile HashEntry<K,V> next; // 下一个HashEntry节点

    HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }

    ...
}

说明:和HashMap的节点一样,HashEntry也是链表。这就说明,ConcurrentHashMap是链式哈希表,它是通过“拉链法”来解决哈希冲突的。

 

2 获取

下面以get(Object key)为例,对ConcurrentHashMap的获取方法进行说明。

public V get(Object key) {
    Segment<K,V> s; // manually integrate access methods to reduce overhead
    HashEntry<K,V>[] tab;
    int h = hash(key);
    long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
    // 获取key对应的Segment片段。
    // 如果Segment片段不为null,则在“Segment片段的HashEntry数组中”中找到key所对应的HashEntry列表;
    // 接着遍历该HashEntry链表,找到于key-value键值对对应的HashEntry节点。
    if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
        (tab = s.table) != null) {
        for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                 (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
             e != null; e = e.next) {
            K k;
            if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                return e.value;
        }
    }
    return null;
}

说明:get(Object key)的作用是返回key在ConcurrentHashMap哈希表中对应的值。
它首先根据key计算出来的哈希值,获取key所对应的Segment片段。
如果Segment片段不为null,则在“Segment片段的HashEntry数组中”中找到key所对应的HashEntry列表。Segment包含“HashEntry数组”对象,而每一个HashEntry本质上是一个单向链表。
接着遍历该HashEntry链表,找到于key-value键值对对应的HashEntry节点。

下面是hash()的源码

private int hash(Object k) {
    int h = hashSeed;

    if ((0 != h) && (k instanceof String)) {
        return sun.misc.Hashing.stringHash32((String) k);
    }

    h ^= k.hashCode();

    // Spread bits to regularize both segment and index locations,
    // using variant of single-word Wang/Jenkins hash.
    h += (h <<  15) ^ 0xffffcd7d;
    h ^= (h >>> 10);
    h += (h <<   3);
    h ^= (h >>>  6);
    h += (h <<   2) + (h << 14);
    return h ^ (h >>> 16);
}

 

3 增加

下面以put(K key, V value)来对ConcurrentHashMap中增加键值对来进行说明。

public V put(K key, V value) {
    Segment<K,V> s;
    if (value == null)
        throw new NullPointerException();
    // 获取key对应的哈希值
    int hash = hash(key);
    int j = (hash >>> segmentShift) & segmentMask;
    // 如果找不到该Segment,则新建一个。
    if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
         (segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment
        s = ensureSegment(j);
    return s.put(key, hash, value, false);
}

说明
(01) put()根据key获取对应的哈希值,再根据哈希值找到对应的Segment片段。如果Segment片段不存在,则新增一个Segment。
(02) 将key-value键值对添加到Segment片段中。

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
    // tryLock()获取锁,成功返回true,失败返回false。
    // 获取锁失败的话,则通过scanAndLockForPut()获取锁,并返回”要插入的key-value“对应的”HashEntry链表“。
    HashEntry<K,V> node = tryLock() ? null :
        scanAndLockForPut(key, hash, value);
    V oldValue;
    try {
        // tab代表”当前Segment中的HashEntry数组“
        HashEntry<K,V>[] tab = table;
        //  根据”hash值“获取”HashEntry数组中对应的HashEntry链表“
        int index = (tab.length - 1) & hash;
        HashEntry<K,V> first = entryAt(tab, index);
        for (HashEntry<K,V> e = first;;) {
            // 如果”HashEntry链表中的当前HashEntry节点“不为null,
            if (e != null) {
                K k;
                // 当”要插入的key-value键值对“已经存在于”HashEntry链表中“时,先保存原有的值。
                // 若”onlyIfAbsent“为true,即”要插入的key不存在时才插入”,则直接退出;
                // 否则,用新的value值覆盖原有的原有的值。
                if ((k = e.key) == key ||
                    (e.hash == hash && key.equals(k))) {
                    oldValue = e.value;
                    if (!onlyIfAbsent) {
                        e.value = value;
                        ++modCount;
                    }
                    break;
                }
                e = e.next;
            }
            else {
                // 如果node非空,则将first设置为“node的下一个节点”。
                // 否则,新建HashEntry链表
                if (node != null)
                    node.setNext(first);
                else
                    node = new HashEntry<K,V>(hash, key, value, first);
                int c = count + 1;
                // 如果添加key-value键值对之后,Segment中的元素超过阈值(并且,HashEntry数组的长度没超过限制),则rehash;
                // 否则,直接添加key-value键值对。
                if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                    rehash(node);
                else
                    setEntryAt(tab, index, node);
                ++modCount;
                count = c;
                oldValue = null;
                break;
            }
        }
    } finally {
        // 释放锁
        unlock();
    }
    return oldValue;
}

说明
put()的作用是将key-value键值对插入到“当前Segment对应的HashEntry中”,在插入前它会获取Segment对应的互斥锁,插入后会释放锁。具体的插入过程如下:
(01) 首先根据“hash值”获取“当前Segment的HashEntry数组对象”中的“HashEntry节点”,每个HashEntry节点都是一个单向链表。
(02) 接着,遍历HashEntry链表。
       若在遍历HashEntry链表时,找到与“要key-value键值对”对应的节点,即“要插入的key-value键值对”的key已经存在于HashEntry链表中。则根据onlyIfAbsent进行判断,若onlyIfAbsent为true,即“当要插入的key不存在时才插入”,则不进行插入,直接返回;否则,用新的value值覆盖原始的value值,然后再返回。
       若在遍历HashEntry链表时,没有找到与“要key-value键值对”对应的节点。当node!=null时,即在scanAndLockForPut()获取锁时,已经新建了key-value对应的HashEntry节点,则”将HashEntry添加到Segment中“;否则,新建key-value对应的HashEntry节点,然后再“将HashEntry添加到Segment中”。 在”将HashEntry添加到Segment中“前,会判断是否需要rehash。如果在添加key-value键值之后,容量会超过阈值,并且HashEntry数组的长度没有超过限制,则进行rehash;否则,直接通过setEntryAt()将key-value键值对添加到Segment中。

在介绍rehash()和setEntryAt()之前,我们先看看自旋函数scanAndLockForPut()。下面是它的源码:

private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
    // 第一个HashEntry节点
    HashEntry<K,V> first = entryForHash(this, hash);
    // 当前的HashEntry节点
    HashEntry<K,V> e = first;
    HashEntry<K,V> node = null;
    // 重复计数(自旋计数器)
    int retries = -1; // negative while locating node

    // 查找”key-value键值对“在”HashEntry链表上对应的节点“;
    // 若找到的话,则不断的自旋;在自旋期间,若通过tryLock()获取锁成功则返回;否则自旋MAX_SCAN_RETRIES次数之后,强制获取”锁“并退出。
    // 若没有找到的话,则新建一个HashEntry链表。然后不断的自旋。
    // 此外,若在自旋期间,HashEntry链表的表头发生变化;则重新进行查找和自旋工作!
    while (!tryLock()) {
        HashEntry<K,V> f; // to recheck first below
        // 1. retries<0的处理情况
        if (retries < 0) {
            // 1.1 如果当前的HashEntry节点为空(意味着,在该HashEntry链表上上没有找到”要插入的键值对“对应的节点),而且node=null;则新建HashEntry链表。
            if (e == null) {
                if (node == null) // speculatively create node
                    node = new HashEntry<K,V>(hash, key, value, null);
                retries = 0;
            }
            // 1.2 如果当前的HashEntry节点是”要插入的键值对在该HashEntry上对应的节点“,则设置retries=0
            else if (key.equals(e.key))
                retries = 0;
            // 1.3 设置为下一个HashEntry。
            else
                e = e.next;
        }
        // 2. 如果自旋次数超过限制,则获取“锁”并退出
        else if (++retries > MAX_SCAN_RETRIES) {
            lock();
            break;
        }
        // 3. 当“尝试了偶数次”时,就获取“当前Segment的第一个HashEntry”,即f。
        // 然后,通过f!=first来判断“当前Segment的第一个HashEntry是否发生了改变”。
        // 若是的话,则重置e,first和retries的值,并重新遍历。
        else if ((retries & 1) == 0 &&
                 (f = entryForHash(this, hash)) != first) {
            e = first = f; // re-traverse if entry changed
            retries = -1;
        }
    }
    return node;
}

说明
scanAndLockForPut()的目标是获取锁。流程如下:
    它首先会调用entryForHash(),根据hash值获取”当前Segment中对应的HashEntry节点(first),即找到对应的HashEntry链表“。
    紧接着进入while循环。在while循环中,它会遍历”HashEntry链表(e)“,查找”要插入的key-value键值对“在”该HashEntry链表上对应的节点“。
         若找到的话,则不断的自旋,即不断的执行while循环。在自旋期间,若通过tryLock()获取锁成功则返回;否则,在自旋MAX_SCAN_RETRIES次数之后,强制获取锁并退出。
         若没有找到的话,则新建一个HashEntry链表,然后不断的自旋。在自旋期间,若通过tryLock()获取锁成功则返回;否则,在自旋MAX_SCAN_RETRIES次数之后,强制获取锁并退出。
     此外,若在自旋期间,HashEntry链表的表头发生变化;则重新进行查找和自旋工作!

理解scanAndLockForPut()时,务必要联系”哈希表“的数据结构。一个Segment本身就是一个哈希表,Segment中包含了”HashEntry数组“对象,而每一个HashEntry对象本身是一个”单向链表“。

 

下面看看rehash()的实现代码。

private void rehash(HashEntry<K,V> node) {
    HashEntry<K,V>[] oldTable = table;
    // ”Segment中原始的HashEntry数组的长度“
    int oldCapacity = oldTable.length;
    // ”Segment中新HashEntry数组的长度“
    int newCapacity = oldCapacity << 1;
    // 新的阈值
    threshold = (int)(newCapacity * loadFactor);
    // 新的HashEntry数组
    HashEntry<K,V>[] newTable =
        (HashEntry<K,V>[]) new HashEntry[newCapacity];
    int sizeMask = newCapacity - 1;
    // 遍历”原始的HashEntry数组“,
    // 将”原始的HashEntry数组“中的每个”HashEntry链表“的值,都复制到”新的HashEntry数组的HashEntry元素“中。
    for (int i = 0; i < oldCapacity ; i++) {
        // 获取”原始的HashEntry数组“中的”第i个HashEntry链表“
        HashEntry<K,V> e = oldTable[i];
        if (e != null) {
            HashEntry<K,V> next = e.next;
            int idx = e.hash & sizeMask;
            if (next == null)   //  Single node on list
                newTable[idx] = e;
            else { // Reuse consecutive sequence at same slot
                HashEntry<K,V> lastRun = e;
                int lastIdx = idx;
                for (HashEntry<K,V> last = next;
                     last != null;
                     last = last.next) {
                    int k = last.hash & sizeMask;
                    if (k != lastIdx) {
                        lastIdx = k;
                        lastRun = last;
                    }
                }
                newTable[lastIdx] = lastRun;
                // 将”原始的HashEntry数组“中的”HashEntry链表(e)“的值,都复制到”新的HashEntry数组的HashEntry“中。
                for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                    V v = p.value;
                    int h = p.hash;
                    int k = h & sizeMask;
                    HashEntry<K,V> n = newTable[k];
                    newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                }
            }
        }
    }
    // 将新的node节点添加到“Segment的新HashEntry数组(newTable)“中。
    int nodeIndex = node.hash & sizeMask; // add the new node
    node.setNext(newTable[nodeIndex]);
    newTable[nodeIndex] = node;
    table = newTable;
}

说明:rehash()的作用是将”Segment的容量“变为”原始的Segment容量的2倍“。
在将原始的数据拷贝到“新的Segment”中后,会将新增加的key-value键值对添加到“新的Segment”中。

setEntryAt()的源码如下:

static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,
                                   HashEntry<K,V> e) {
    UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
}

UNSAFE是Segment类中定义的“静态sun.misc.Unsafe”对象。源码如下:

static final sun.misc.Unsafe UNSAFE;

Unsafe.java在openjdk6中的路径是:openjdk6/jdk/src/share/classes/sun/misc/Unsafe.java。其中,putOrderedObject()的源码下:

public native void putOrderedObject(Object o, long offset, Object x);

说明:putOrderedObject()是一个本地方法。
它会设置obj对象中offset偏移地址对应的object型field的值为指定值。它是一个有序或者有延迟的putObjectVolatile()方法,并且不保证值的改变被其他线程立即看到。只有在field被volatile修饰并且期望被意外修改的时候,使用putOrderedObject()才有用。

总之,setEntryAt()的目的是设置tab中第i位置元素的值为e,且该设置会有延迟。

 

4 删除

下面以remove(Object key)来对ConcurrentHashMap中的删除操作来进行说明。

public V remove(Object key) {
    int hash = hash(key);
    // 根据hash值,找到key对应的Segment片段。
    Segment<K,V> s = segmentForHash(hash);
    return s == null ? null : s.remove(key, hash, null);
}

说明:remove()首先根据“key的计算出来的哈希值”找到对应的Segment片段,然后再从该Segment片段中删除对应的“key-value键值对”。

remove()的方法如下:

final V remove(Object key, int hash, Object value) {
    // 尝试获取Segment对应的锁。
    // 尝试失败的话,则通过scanAndLock()来获取锁。
    if (!tryLock())
        scanAndLock(key, hash);
    V oldValue = null;
    try {
        // 根据“hash值”找到“Segment的HashEntry数组”中对应的“HashEntry节点(e)”,该HashEntry节点是一HashEntry个链表。
        HashEntry<K,V>[] tab = table;
        int index = (tab.length - 1) & hash;
        HashEntry<K,V> e = entryAt(tab, index);
        HashEntry<K,V> pred = null;
        // 遍历“HashEntry链表”,删除key-value键值对
        while (e != null) {
            K k;
            HashEntry<K,V> next = e.next;
            if ((k = e.key) == key ||
                (e.hash == hash && key.equals(k))) {
                V v = e.value;
                if (value == null || value == v || value.equals(v)) {
                    if (pred == null)
                        setEntryAt(tab, index, next);
                    else
                        pred.setNext(next);
                    ++modCount;
                    --count;
                    oldValue = v;
                }
                break;
            }
            pred = e;
            e = next;
        }
    } finally {
        // 释放锁
        unlock();
    }
    return oldValue;
}

说明:remove()的目的就是删除key-value键值对。在删除之前,它会获取到Segment的互斥锁,在删除之后,再释放锁。
它的删除过程也比较简单,它会先根据hash值,找到“Segment的HashEntry数组”中对应的“HashEntry”节点。根据Segment的数据结构,我们知道Segment中包含一个HashEntry数组对象,而每一个HashEntry本质上是一个单向链表。 在找到“HashEntry”节点之后,就遍历该“HashEntry”节点对应的链表,找到key-value键值对对应的节点,然后删除。

下面对scanAndLock()进行说明。它的源码如下:

private void scanAndLock(Object key, int hash) {
    // 第一个HashEntry节点
    HashEntry<K,V> first = entryForHash(this, hash);
    HashEntry<K,V> e = first;
    int retries = -1;

    // 查找”key-value键值对“在”HashEntry链表上对应的节点“;
    // 无论找没找到,最后都会不断的自旋;在自旋期间,若通过tryLock()获取锁成功则返回;否则自旋MAX_SCAN_RETRIES次数之后,强制获取”锁“并退出。
    // 若在自旋期间,HashEntry链表的表头发生变化;则重新进行查找和自旋!
    while (!tryLock()) {
        HashEntry<K,V> f;
        if (retries < 0) {
            // 如果“遍历完该HashEntry链表,仍然没找到”要删除的键值对“对应的节点”
            // 或者“在该HashEntry链表上找到”要删除的键值对“对应的节点”,则设置retries=0
            // 否则,设置e为下一个HashEntry节点。
            if (e == null || key.equals(e.key))
                retries = 0;
            else
                e = e.next;
        }
        // 自旋超过限制次数之后,获取锁并退出。
        else if (++retries > MAX_SCAN_RETRIES) {
            lock();
            break;
        }
        // 当“尝试了偶数次”时,就获取“当前Segment的第一个HashEntry”,即f。
        // 然后,通过f!=first来判断“当前Segment的第一个HashEntry是否发生了改变”。
        // 若是的话,则重置e,first和retries的值,并重新遍历。
        else if ((retries & 1) == 0 &&
                 (f = entryForHash(this, hash)) != first) {
            e = first = f;
            retries = -1;
        }
    }
}

说明:scanAndLock()的目标是获取锁。它的实现与scanAndLockForPut()类似,这里就不再过多说明。

 

总结:ConcurrentHashMap是线程安全的哈希表,它是通过“锁分段”来实现的。ConcurrentHashMap中包括了“Segment(锁分段)数组”,每个Segment就是一个哈希表,而且也是可重入的互斥锁。第一,Segment是哈希表表现在,Segment包含了“HashEntry数组”,而“HashEntry数组”中的每一个HashEntry元素是一个单向链表。即Segment是通过链式哈希表。第二,Segment是可重入的互斥锁表现在,Segment继承于ReentrantLock,而ReentrantLock就是可重入的互斥锁。
对于ConcurrentHashMap的添加,删除操作,在操作开始前,线程都会获取Segment的互斥锁;操作完毕之后,才会释放。而对于读取操作,它是通过volatile去实现的,HashEntry数组是volatile类型的,而volatile能保证“即对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入”,即我们总能读到其它线程写入HashEntry之后的值。 以上这些方式,就是ConcurrentHashMap线程安全的实现原理。

 

ConcurrentHashMap示例

下面,我们通过一个例子去对比HashMap和ConcurrentHashMap。

1 import java.util.*;
 2 import java.util.concurrent.*;
 3 
 4 /*
 5  *   ConcurrentHashMap是“线程安全”的哈希表,而HashMap是非线程安全的。
 6  *
 7  *   下面是“多个线程同时操作并且遍历map”的示例
 8  *   (01) 当map是ConcurrentHashMap对象时,程序能正常运行。
 9  *   (02) 当map是HashMap对象时,程序会产生ConcurrentModificationException异常。
10  *
11  * @author skywang
12  */
13 public class ConcurrentHashMapDemo1 {
14 
15     // TODO: map是HashMap对象时,程序会出错。
16     //private static Map<String, String> map = new HashMap<String, String>();
17     private static Map<String, String> map = new ConcurrentHashMap<String, String>();
18     public static void main(String[] args) {
19     
20         // 同时启动两个线程对map进行操作!
21         new MyThread("ta").start();
22         new MyThread("tb").start();
23     }
24 
25     private static void printAll() {
26         String key, value;
27         Iterator iter = map.entrySet().iterator();
28         while(iter.hasNext()) {
29             Map.Entry entry = (Map.Entry)iter.next();
30             key = (String)entry.getKey();
31             value = (String)entry.getValue();
32             System.out.print(key+" - "+value+", ");
33         }
34         System.out.println();
35     }
36 
37     private static class MyThread extends Thread {
38         MyThread(String name) {
39             super(name);
40         }
41         @Override
42         public void run() {
43                 int i = 0;
44             while (i++ < 6) {
45                 // “线程名” + "-" + "序号"
46                 String val = Thread.currentThread().getName()+i;
47                 map.put(String.valueOf(i), val);
48                 // 通过“Iterator”遍历map。
49                 printAll();
50             }
51         }
52     }
53 }

(某一次)运行结果

1 - tb1, 
1 - tb1, 
1 - tb1, 1 - tb1, 2 - tb2, 
2 - tb2, 1 - tb1, 
3 - ta3, 1 - tb1, 2 - tb2, 
3 - tb3, 1 - tb1, 2 - tb2, 
3 - tb3, 1 - tb1, 4 - tb4, 3 - tb3, 2 - tb2, 
4 - tb4, 1 - tb1, 2 - tb2, 
5 - ta5, 1 - tb1, 3 - tb3, 5 - tb5, 4 - tb4, 3 - tb3, 2 - tb2, 
4 - tb4, 1 - tb1, 2 - tb2, 
5 - tb5, 1 - tb1, 6 - tb6, 5 - tb5, 3 - tb3, 6 - tb6, 4 - tb4, 3 - tb3, 2 - tb2, 
4 - tb4, 2 - tb2,

结果说明:如果将源码中的map改成HashMap对象时,程序会产生ConcurrentModificationException异常。

 


更多内容

1. Java多线程系列--“JUC集合”01之 框架

2. Java多线程系列--“JUC集合”02之 CopyOnWriteArrayList

3. Java多线程系列--“JUC集合”03之 CopyOnWriteArraySet

4. Java多线程系列目录(共xx篇)