图像的实质是一种二维信号,滤波是信号处理中的一个重要概念。在图像处理中,滤波是一种非常常见的技术,它的原理非常简单,但是其思想却十分值得借鉴,滤波是很多图像算法的前置步骤或基础,掌握图像滤波对理解卷积神经网络也有一定帮助。

1. 滤波分类

线性滤波: 对邻域中的像素的计算为线性运算时,如利用窗口函数进行平滑加权求和的运算,或者某种卷积运算,都可以称为线性滤波。常见的线性滤波有:均值滤波、高斯滤波、盒子滤波、拉普拉斯滤波等等,通常线性滤波器之间只是模版系数不同。

非线性滤波: 非线性滤波利用原始图像跟模版之间的一种逻辑关系得到结果,如最值滤波器,中值滤波器。比较常用的有中值滤波器和双边滤波器。

2. 方框(盒子)滤波

方框滤波是一种非常有用的线性滤波,也叫盒子滤波,均值滤波就是盒子滤波归一化的特殊情况。

应用: 可以说,一切需要求某个邻域内像素之和的场合,都有方框滤波的用武之地,比如:均值滤波、引导滤波、计算Haar特征等等。

方框原理的示意图如下:

机器学习 非线性滤波器 线性滤波和非线性滤波_均值滤波


其中:

机器学习 非线性滤波器 线性滤波和非线性滤波_#include_02

3. 均值滤波

均值滤波的应用场合:

根据冈萨雷斯书中的描述,均值模糊可以模糊图像以便得到感兴趣物体的粗略描述,也就是说,去除图像中的不相关细节,其中“不相关”是指与滤波器模板尺寸相比较小的像素区域,从而对图像有一个整体的认知。即为了对感兴趣的物体得到一个大致的整体的描述而模糊一幅图像,忽略细小的细节。

均值滤波的缺陷:

均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。特别是椒盐噪声。

均值滤波的公式如下:

机器学习 非线性滤波器 线性滤波和非线性滤波_#include_03

模板一般选择的是3*3的邻域,比如如下图所示的:

机器学习 非线性滤波器 线性滤波和非线性滤波_机器学习 非线性滤波器_04

4.4.1 高斯滤波

应用: 高斯滤波是一种线性平滑滤波器,对于服从正态分布的噪声有很好的抑制作用。在实际场景中,我们通常会假定图像包含的噪声为高斯白噪声,所以在许多实际应用的预处理部分,都会采用高斯滤波抑制噪声,如传统车牌识别等。

高斯滤波和均值滤波一样,都是利用一个掩膜和图像进行卷积求解。不同之处在于:均值滤波器的模板系数都是相同的为1,而高斯滤波器的模板系数,则随着距离模板中心的增大而系数减小(服从二维高斯分布)。所以,高斯滤波器相比于均值滤波器对图像个模糊程度较小,更能够保持图像的整体细节。

二维高斯分布如下图所示:

机器学习 非线性滤波器 线性滤波和非线性滤波_机器学习 非线性滤波器_05


基于OpenCV的实现的各种滤波形式:

1:方框滤波

void boxFilter( InputArray src, OutputArray dst, 
                int ddepth,
                Size ksize,  
                Point anchor = Point(-1,-1),
                bool normalize = true,
                int borderType = BORDER_DEFAULT );

参数:

  • src – input image.
  • dst – output image of the same size and type as src.
  • ddepth – the output image depth (-1 to use src.depth()).
  • ksize – blurring kernel size. anchor
  • anchor point; default value Point(-1,-1) means that the anchor is at the kernel center.
  • normalize – flag, specifying whether the kernel is normalized by its area or not.
  • borderType – border mode used to extrapolate pixels outside of the image. 可参考:cv::BorderTypes

2:均值滤波

void cv::blur	(	InputArray 	src,
                    OutputArray dst,
                       Size 	ksize,
                      Point 	anchor = Point(-1,-1),
                       int 	  borderType = BORDER_DEFAULT 
)

参数:

  • src – input image; it can have any number of channels, which are processed independently, but the
  • depth – should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
    dst – output image of the same size and type as src.
    ksize – blurring kernel size.
    anchor – anchor point; default value Point(-1,-1) means that the anchor is at the kernel center.
    borderType – border mode used to extrapolate pixels outside of the image

3:高斯滤波

void GaussianBlur(InputArray src, OutputArray dst, 
                  Size ksize, 
                  double sigmaX, double sigmaY=0,
                  int borderType=BORDER_DEFAULT )

参数:

  • src — input image; the image can have any number of channels, which are processed independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
  • dst — output image of the same size and type as src.
    ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be positive and odd. Or, they can be zero’s and then they are computed from sigma.
    sigmaX — Gaussian kernel standard deviation in X direction.
    sigmaY — Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height, respectively (see cv::getGaussianKernel for details); to fully control the result regardless of possible future modifications of all this semantics, it is recommended to specify all of ksize, sigmaX, and sigmaY.
    borderType — pixel extrapolation method, 可参考:cv::BorderTypes
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
 
using namespace cv;
 
int main()
{
	//载入图像
	Mat image = imread("1.jpg");
	Mat dst1 , dst2,dst3;
	 //均值滤波
	blur(image, dst1, Size(7, 7));
	//方框滤波
	cv::boxFilter(image, dst2, -1, cv::Size(7, 7), cv::Point(-1, -1), true, cv::BORDER_CONSTANT);
	//高斯滤波
	cv:: GaussianBlur(image, dst3,cv::Size(7, 7),0.8);
	
    //创建窗口并显示
	namedWindow("均值滤波效果图");
    namedWindow("方框滤波效果图");
    namedWindow("高斯滤波效果图");
	imshow("均值滤波效果图", dst1);
    imshow("方框滤波效果图", dts2);
    imshow("高斯滤波效果图", dts3);
	waitKey(0);
	return 0;
}

根据原理自己实现

1.方框滤波

#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
 
/
//求积分图-优化方法
//由上方negral(i-1,j)加上当前行的和即可
//对于W*H图像:2*(W-1)*(H-1)次加减法
//比常规方法快1.5倍左右
/
void Fast_integral(cv::Mat& src, cv::Mat& dst){
	int nr = src.rows;
	int nc = src.cols;
	int sum_r = 0;
	dst = cv::Mat::zeros(nr + 1, nc + 1, CV_64F);
	for (int i = 1; i < dst.rows; ++i){
		for (int j = 1, sum_r = 0; j < dst.cols; ++j){
			//行累加,因为积分图相当于在原图上方加一行,左边加一列,所以积分图的(1,1)对应原图(0,0),(i,j)对应(i-1,j-1)
			sum_r = src.at<uchar>(i - 1, j - 1) + sum_r; //行累加
			dst.at<double>(i, j) = dst.at<double>(i - 1, j) + sum_r;
		}
	}
}
 
//
//盒子滤波-均值滤波是其特殊情况
/
void BoxFilter(cv::Mat& src, cv::Mat& dst, cv::Size wsize, bool normalize){
 
	//图像边界扩充
	if (wsize.height % 2 == 0 || wsize.width % 2 == 0){
		fprintf(stderr, "Please enter odd size!");
		exit(-1);
	}
	int hh = (wsize.height - 1) / 2;
	int hw = (wsize.width - 1) / 2;
	cv::Mat Newsrc;
	cv::copyMakeBorder(src, Newsrc, hh, hh, hw, hw, cv::BORDER_REFLECT);//以边缘为轴,对称
	src.copyTo(dst);
 
	//计算积分图
	cv::Mat inte;
	Fast_integral(Newsrc, inte);
 
	//BoxFilter
	double mean = 0;
	for (int i = hh + 1; i < src.rows + hh + 1; ++i){  //积分图图像比原图(边界扩充后的)多一行和一列 
		for (int j = hw + 1; j < src.cols + hw + 1; ++j){
			double top_left = inte.at<double>(i - hh - 1, j - hw - 1);
			double top_right = inte.at<double>(i - hh - 1, j + hw);
			double buttom_left = inte.at<double>(i + hh, j - hw - 1);
			double buttom_right = inte.at<double>(i + hh, j + hw);
			if (normalize == true)
				mean = (buttom_right - top_right - buttom_left + top_left) / wsize.area();
			else
				mean = buttom_right - top_right - buttom_left + top_left;
			
			//一定要进行判断和数据类型转换
			if (mean < 0)
				mean = 0;
			else if (mean>255)
				mean = 255;
			dst.at<uchar>(i - hh - 1, j - hw - 1) = static_cast<uchar>(mean);
 
		}
	}
}
 
int main(){
	cv::Mat src = cv::imread("I:\\Learning-and-Practice\\2019Change\\Image process algorithm\\Img\\woman2.jpeg");
	if (src.empty()){
		return -1;
	}
 
	//自编BoxFilter测试
	cv::Mat dst1;
	double t2 = (double)cv::getTickCount(); //测时间
	if (src.channels() > 1){
		std::vector<cv::Mat> channel;
		cv::split(src, channel);
		BoxFilter(channel[0], channel[0], cv::Size(7, 7), true);//盒子滤波
		BoxFilter(channel[1], channel[1], cv::Size(7, 7), true);//盒子滤波
		BoxFilter(channel[2], channel[2], cv::Size(7, 7), true);//盒子滤波
		cv::merge(channel,dst1);
	}else
		BoxFilter(src, dst1, cv::Size(7, 7), true);//盒子滤波
	t2 = (double)cv::getTickCount() - t2;
	double time2 = (t2 *1000.) / ((double)cv::getTickFrequency());
	std::cout << "FASTmy_process=" << time2 << " ms. " << std::endl << std::endl;
 
	//opencv自带BoxFilter测试
	cv::Mat dst2;
	double t1 = (double)cv::getTickCount(); //测时间
	cv::boxFilter(src, dst2, -1, cv::Size(7, 7), cv::Point(-1, -1), true, cv::BORDER_CONSTANT);//盒子滤波
	t1 = (double)cv::getTickCount() - t1;
	double time1 = (t1 *1000.) / ((double)cv::getTickFrequency());
	std::cout << "Opencvbox_process=" << time1 << " ms. " << std::endl << std::endl;
 
	cv::namedWindow("src");
	cv::imshow("src", src);
	cv::namedWindow("ourdst",CV_WINDOW_NORMAL);
	cv::imshow("ourdst", dst1);
	cv::namedWindow("opencvdst", CV_WINDOW_NORMAL);
	cv::imshow("opencvdst", dst2);
	cv::waitKey(0);
 
}

2:均值滤波

#include <opencv.hpp>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
 
void MeanFilater(cv::Mat& src,cv::Mat& dst,cv::Size wsize){
	//图像边界扩充:窗口的半径
	if (wsize.height % 2 == 0 || wsize.width % 2 == 0){
		fprintf(stderr,"Please enter odd size!" );
		exit(-1);
	}
	int hh = (wsize.height - 1) / 2;
	int hw = (wsize.width - 1) / 2;
	cv::Mat Newsrc;
	cv::copyMakeBorder(src, Newsrc, hh, hh, hw, hw, cv::BORDER_REFLECT_101);//以边缘为轴,对称
	dst=cv::Mat::zeros(src.size(),src.type());
 
    //均值滤波
	int sum = 0;
	int mean = 0;
	for (int i = hh; i < src.rows + hh; ++i){
		for (int j = hw; j < src.cols + hw;++j){
 
			for (int r = i - hh; r <= i + hh; ++r){
				for (int c = j - hw; c <= j + hw;++c){
					sum = Newsrc.at<uchar>(r, c) + sum;
				}
			}
			mean = sum / (wsize.area());
			dst.at<uchar>(i-hh,j-hw)=mean;
			sum = 0;
			mean = 0;
		}
	}
 
}
 
int main(){
	cv::Mat src = cv::imread("I:\\Learning-and-Practice\\2019Change\\Image process algorithm\\Img\\Fig0334(a)(hubble-original).tif");
	if (src.empty()){
		return -1;
	}
	if (src.channels() > 1)
		cv::cvtColor(src,src,CV_RGB2GRAY);
 
	cv::Mat dst;
	cv::Mat dst1;
	cv::Size wsize(7,7);
 
	double t2 = (double)cv::getTickCount();
	MeanFilater(src, dst, wsize); //均值滤波
	t2 = (double)cv::getTickCount() - t2;
	double time2 = (t2 *1000.) / ((double)cv::getTickFrequency());
	std::cout << "FASTmy_process=" << time2 << " ms. " << std::endl << std::endl;
 
	cv::namedWindow("src");
	cv::imshow("src", src);
	cv::namedWindow("dst");
	cv::imshow("dst", dst);
	cv::imwrite("I:\\Learning-and-Practice\\2019Change\\Image process algorithm\\Image Filtering\\MeanFilter\\Mean_hubble.jpg",dst);
	cv::waitKey(0);
}

3.高斯滤波

//按二维高斯函数实现高斯滤波
///
void GaussianFilter(cv::Mat& src, cv::Mat& dst, cv::Mat window){
	int hh = (window.rows - 1) / 2;
	int hw = (window.cols - 1) / 2;
	dst = cv::Mat::zeros(src.size(),src.type());
	//边界填充
	cv::Mat Newsrc;
	cv::copyMakeBorder(src, Newsrc, hh, hh, hw, hw, cv::BORDER_REPLICATE);//边界复制
	
	//高斯滤波
	for (int i = hh; i < src.rows + hh;++i){
		for (int j = hw; j < src.cols + hw; ++j){
			double sum[3] = { 0 };
 
			for (int r = -hh; r <= hh; ++r){
				for (int c = -hw; c <= hw; ++c){
					if (src.channels() == 1){
						sum[0] = sum[0] + Newsrc.at<uchar>(i + r, j + c) * window.at<double>(r + hh, c + hw);
					}
					else if (src.channels() == 3){
						cv::Vec3b rgb = Newsrc.at<cv::Vec3b>(i+r,j + c);
						sum[0] = sum[0] + rgb[0] * window.at<double>(r + hh, c + hw);//B
						sum[1] = sum[1] + rgb[1] * window.at<double>(r + hh, c + hw);//G
						sum[2] = sum[2] + rgb[2] * window.at<double>(r + hh, c + hw);//R
					}
				}
			}
 
			for (int k = 0; k < src.channels(); ++k){
				if (sum[k] < 0)
					sum[k] = 0;
				else if (sum[k]>255)
					sum[k] = 255;
			}
			if (src.channels() == 1)
			{
				dst.at<uchar>(i - hh, j - hw) = static_cast<uchar>(sum[0]);
			}
			else if (src.channels() == 3)
			{
				cv::Vec3b rgb = { static_cast<uchar>(sum[0]), static_cast<uchar>(sum[1]), static_cast<uchar>(sum[2]) };
				dst.at<cv::Vec3b>(i-hh, j-hw) = rgb;
			}
 
		}
	}
 
}