python Shapely 使用指南
刚从学习了Shapely包使用,怕忘记,在这里记录一下。
阅读目录
1、引入包
from shapely.geometry import Point
from shapely.geometry import LineString
2、共有的变量和方法
object.area

Returns the area (float) of the object.

object.bounds

返回对象的(minx,miny,maxx,maxy)元组(float类型)

object.length

返回对象的长度

object.geom_type

返回对象类型

object.distance(other)

返回本对象和另一个对象的距离

object.representative_point()

Returns a cheaply computed point that is guaranteed to be within the geometric object.

>>> from shapely.geometry import Point
>>> print Point(0,0).distance(Point(0,1))
1.0
>>> from shapely.geometry import LineString
>>> line = LineString([(0,0), (1,1), (1,2)])
>>> line.area
0.0
>>> line.bounds
(0.0, 0.0, 1.0, 2.0)
>>> line.length
2.414213562373095
>>> line.geom_type
'LineString'

3、Point
class Point(coordinates)

三种赋值方式

>>> point = Point(0,0)
>>> point_2 = Point((0,0))
>>> point_3 = Point(point)

一个点对象有area和长度都为0

>>> point.area
0.0
>>> point.length
0.0

坐标可以通过coords或x、y、z得到

>>> p = Point(2,3)
>>> p.coords
<shapely.coords.CoordinateSequence object at 0x7ffbc3d60dd0>
>>> list(p.coords)
[(2.0, 3.0)]
>>> p.x
2.0
>>> p.y
3.0

coords可以被切片

>>> p.coords[:]
[(2.0, 3.0)]

4、LineStrings
LineStrings构造函数传入参数是2个或多个点序列

一个LineStrings对象area为0,长度非0

>>> line = LineString([(0,0), (0,1), (1,2)])
>>> line.area
0.0
>>> line.length
2.414213562373095

获得坐标

>>> line.coords[:]
[(0.0, 0.0), (0.0, 1.0), (1.0, 2.0)]
  >>> list(line.coords)
  [(0.0, 0.0), (0.0, 1.0), (1.0, 2.0)]

LineString依然可以接受一个同类型对象

>>> line2 = LineString(line)
>>> line2.coords[:]
[(0.0, 0.0), (0.0, 1.0), (1.0, 2.0)]

5、常见格式转换
wkt: Well Know Text

wkb: Well Kown Binary

>>> Point(1,1).wkt
'POINT (1 1)'
>>> Point(1,1).wkb
'\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf0?'
>>> Point(1,1).wkb.encode('hex')
'0101000000000000000000f03f000000000000f03f'
>>> 
>>> Point(1,1).wkb.encode('hex')
'0101000000000000000000f03f000000000000f03f'

两者都有loads和dumps方法

对于wkt

>>> from shapely.wkt import dumps, loads
>>> s = dumps(Point(1,2))
>>> s
'POINT (1.0000000000000000 2.0000000000000000)'
>>> ss = loads(s)
>>> ss
<shapely.geometry.point.Point object at 0x7ffbc3d783d0>
>>> ss.coords[:]
[(1.0, 2.0)]

对于wkb

>>> from shapely.wkb import dumps, loads
>>> s = dumps(Point(1,2), hex=True)
>>> s
'0101000000000000000000F03F0000000000000040'
>>> ss = loads(s, hex=True)
>>> ss
<shapely.geometry.point.Point object at 0x7ffbc3d78790>
>>> ss.coords
<shapely.coords.CoordinateSequence object at 0x7ffbc3d783d0>
>>> ss.coords[:]
[(1.0, 2.0)]

补充代码:

# ------------------------------------------------------------------------------------------------------------------
# 在目标检测中一个很重要的问题就是NMS及IOU计算,而一般所说的目标检测检测的box是规则矩形框,计算IOU也非常简单,有两种方法:

# 1. 两个矩形的宽之和减去组合后的矩形的宽就是重叠矩形的宽,同比重叠矩形的高
#    IOU = 交集部分/包含两个四边形最小多边形的面积

# 2. 右下角的minx减去左上角的maxx就是重叠矩形的宽,同比高
#    IOU = 重叠面积 / (两矩形面积和—重叠面积)

# 不规则四边形就不能通过这种方式来计算,python的shapely包可以直接做到,下面给出的代码和注释
# 来自:白翔老师的textBoxes++论文源码,
# ------------------------------------------------------------------------------------------------------------------

import numpy as np
import shapely
from shapely.geometry import Polygon, MultiPoint  # 多边形

line1 = [2, 0, 2, 2, 0, 0, 0, 2]  # 四边形四个点坐标的一维数组表示,[x,y,x,y....];随意分别放入框的四个角坐标
a = np.array(line1).reshape(4, 2)  # 四边形二维坐标表示
poly1 = Polygon(a).convex_hull  # python四边形对象,会自动计算四个点,最后四个点顺序为:左上 左下  右下 右上 左上
print(Polygon(a).convex_hull)  # 可以打印看看是不是这样子(0 0, 0 2, 2 2, 2 0, 0 0)

line2 = [1, 1, 4, 1, 4, 4, 1, 4]
b = np.array(line2).reshape(4, 2)
poly2 = Polygon(b).convex_hull
print(Polygon(b).convex_hull)

union_poly = np.concatenate((a, b))  # 合并两个box坐标,变为8*2
print(union_poly)
print(MultiPoint(union_poly).convex_hull)  # 包含两四边形最小的多边形点;(0 0, 0 2, 1 4, 4 4, 4 1, 2 0, 0 0)
if not poly1.intersects(poly2):  # 如果两四边形不相交
    iou = 0
else:
    try:
        inter_area = poly1.intersection(poly2).area  # 相交面积
        print(inter_area)
        # union_area = poly1.area + poly2.area - inter_area
        union_area = MultiPoint(union_poly).convex_hull.area  # 最小多边形点面积
        print(union_area)
        if union_area == 0:
            iou = 0
        # iou = float(inter_area) / (union_area-inter_area)  #错了
        iou = float(inter_area) / union_area
        # iou=float(inter_area) /(poly1.area+poly2.area-inter_area)
        # 源码中给出了两种IOU计算方式,第一种计算的是: 交集部分/包含两个四边形最小多边形的面积
        # 第二种: 交集 / 并集(常见矩形框IOU计算方式)
    except shapely.geos.TopologicalError:
        print('shapely.geos.TopologicalError occured, iou set to 0')
        iou = 0

print(a)

print(iou)