FlinkCEP是在Flink上层实现的复杂事件处理库。 它可以让你在无限事件流中检测出特定的事件模型,有机会掌握数据中重要的那部分。

官网文档: https://ci.apache.org/projects/flink/flink-docs-stable/zh/dev/libs/cep.html

这里给个demo,对比下不用cep和用cep的区别,
      实现目标: 从目标csv中读取模拟登录的数据,实时检测,如果5秒钟之内连续登录的次数超过2次,则马上告警

按照之前的正常操作(非CEP实现)

实现步骤:
1、准备环境和数据源加载到内存
2、进行数据切割,转成需要的格式(样例类)
3、指定时间窗口watermark及事件时间取哪个字段
4、按每个用户id进行分组,统计每个用户id的登录行为(毕竟不能放一起统计吧)
5、实现具体的处理逻辑ProcessFunction
6、输出检测数据

准备的模拟数据 userLogin.csv:

1234,10.0.1.1,fail,1611373940
1235,10.0.1.2,fail,1611373941
1234,10.0.1.3,fail,1611373942
1234,10.0.1.3,success,1611373943
1234,10.0.1.3,fail,1611373943
1234,10.0.1.3,fail,1611373944
1236,10.0.1.4,fail,1611373945
1234,10.0.1.4,fail,1611373957
1234,10.0.1.5,fail,1611373958
1234,10.0.11.55,fail,1611373959
1236,2.2.2.2,fail,1611373960
/*
 *
 * @author mafei
 * @date 2021/1/24
*/
package com.mafei

import org.apache.flink.api.common.state.{ListState, ListStateDescriptor, ValueState, ValueStateDescriptor}
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.functions.KeyedProcessFunction
import org.apache.flink.streaming.api.scala._
import org.apache.flink.util.Collector

import scala.collection.mutable.ListBuffer

/**
 * 定义一个输入数据的样例类
 *
 * @param userId   用户id
 * @param ip       客户端的ip
 * @param loginState    登录状态,目前只有success/fail,后期可以做扩展,所以定义为string
 * @param ts       事件的时间戳,单位秒
 */
case class userLogin(userId: Long,ip: String,loginState: String,ts: Long)

/**
 * 定义一个输出的样例类
 * @param userId   用户id
 * @param startTs   开始登录时间
 * @param endTs     触发事件的最后一次时间
 * @param loginCount   时间段内总共登录的次数
 */
case class userLoginWarning(userId: Long, startTs: Long, endTs:Long, loginCount: Long)

object maliceLoginDetect {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) //指定事件时间为窗口和watermark的时间
    env.setParallelism(1)

    //从文件中读取数据
    val resource = getClass.getResource("/userLogin.csv")
    val inputStream = env.readTextFile(resource.getPath)

    // 转换成样例类,并提取时间戳watermark
    val loginEventStream = inputStream
      .map(d => {
        val arr = d.split(",")
        // 分别对应  userId        ip      登录状态  时间戳
        userLogin(arr(0).toLong, arr(1), arr(2), arr(3).toLong)
      })
      .assignAscendingTimestamps(_.ts * 1000L) //把秒转为毫秒

    val loginWarningStream = loginEventStream
      .keyBy(_.userId)
      .process(new loginMaliceDetect(2))

    loginWarningStream.print()
    env.execute()
  }
}

class loginMaliceDetect(warningCount: Long) extends KeyedProcessFunction[Long,userLogin,userLoginWarning]{

  //定义状态,保存当前所有的登录事件为list,方便后边做数据统计
  lazy val loginFailListState: ListState[userLogin] = getRuntimeContext.getListState(new ListStateDescriptor[userLogin]("loginFail-list", classOf[userLogin]))

  //定义定时器的时间戳状态,否则没法删定时器

  lazy val  timerTsState: ValueState[Long] = getRuntimeContext.getState(new ValueStateDescriptor[Long]("timerState", classOf[Long]))

  override def processElement(i: userLogin, context: KeyedProcessFunction[Long, userLogin, userLoginWarning]#Context, collector: Collector[userLoginWarning]): Unit = {
    //判断,如果当前事件是登录失败事件,那再继续操作
    if(i.loginState == "fail"){
      loginFailListState.add(i)
      //如果没有注册定时器,那就注册一个定时器,5秒之后触发
      if(timerTsState.value()== 0){
        val timerTs = i.ts * 1000L + 5000L
        context.timerService().registerEventTimeTimer(timerTs)
        timerTsState.update(timerTs)
      }
    }
    else if(i.loginState == "success"){
      context.timerService().deleteEventTimeTimer(timerTsState.value())
      timerTsState.clear()
      loginFailListState.clear()
    }
  }

  override def onTimer(timestamp: Long, ctx: KeyedProcessFunction[Long, userLogin, userLoginWarning]#OnTimerContext, out: Collector[userLoginWarning]): Unit = {
    // 判断下如果登录失败次数超过了设置的阈值,则告警
    val loginFailList: ListBuffer[userLogin] = new ListBuffer[userLogin]
    val iterable = loginFailListState.get().iterator()
    while (iterable.hasNext){
      loginFailList += iterable.next()
    }
    if (loginFailList.size > warningCount){
      out.collect(userLoginWarning(userId = ctx.getCurrentKey, startTs = loginFailList.head.ts, endTs = loginFailList.last.ts, loginCount = loginFailList.size))
    }
    loginFailList.clear()
    loginFailListState.clear()
    timerTsState.clear()
  }
}

代码结构及运行效果




dolphingScheduler 安全中心怎么新建flink 环境_大数据


使用flink CEP实现

上面代码栗子是可以实现基本的登录异常检测了,但是如果碰到数据乱序等情况,
有3个失败事件在时间范围内,但是有个乱序的数据插在中间,这时候按照逻辑中间就会情况重新计算。。这时候就需要用到flink提供的cep(复杂事件检测)的功能了

在pom.xml中增加cep的依赖

<properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>

        <flink.version>1.10.1</flink.version>
        <scala.binary.version>2.12</scala.binary.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-cep-scala_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
    </dependencies>
/*
 *
 * @author mafei
 * @date 2021/1/24
*/
package com.mafei

import org.apache.flink.cep.PatternSelectFunction
import org.apache.flink.cep.scala.CEP
import org.apache.flink.cep.scala.pattern.Pattern
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.time.Time

import java.util

object maliceLoginDetectWithCep {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) //指定事件时间为窗口和watermark的时间
    env.setParallelism(1)

    //从文件中读取数据
    val resource = getClass.getResource("/userLogin.csv")
    val inputStream = env.readTextFile(resource.getPath)

    // 转换成样例类,并提取时间戳watermark
    val loginEventStream = inputStream
      .map(d => {
        val arr = d.split(",")
        // 分别对应  userId        ip      登录状态  时间戳
        userLogin(arr(0).toLong, arr(1), arr(2), arr(3).toLong)
      })
      .assignAscendingTimestamps(_.ts * 1000L) //把秒转为毫秒

    // 1、先定义匹配的模式,需求为一个登录失败事件后,紧接着出现另一个失败事件
    val loginFailPattern = Pattern
      .begin[userLogin]("firstFail")
        .where(_.loginState == "fail")
      .next("secondFail")
        .where(_.loginState == "fail")
      .within(Time.seconds(5))

    //2、将匹配的规则应用在数据流中,得到一个PatternStream
    val patternStream = CEP.pattern(loginEventStream.keyBy(_.userId), loginFailPattern)

    // 3、匹配中符合模式要求的数据流,需要调用select
    val loginFailWarningStream = patternStream.select(new LoginFailEventMatch())
    loginFailWarningStream.print()
    env.execute("login fail detect with cep")

  }
}
class LoginFailEventMatch() extends PatternSelectFunction[userLogin,userLoginWarning]{
  override def select(map: util.Map[String, util.List[userLogin]]): userLoginWarning = {

    //前边定义的所有pattern,都在Map里头,因为map的value里面只定义了一个事件,所以只会有一条,取第一个就可以,如果定义了多个,需要按实际情况来
    val firstFailEvent = map.get("firstFail").get(0)
    val secondFailEvent = map.get("secondFail").iterator().next()
    userLoginWarning(firstFailEvent.userId,firstFailEvent.ts,secondFailEvent.ts,2)
  }
}

代码结构及运行效果


dolphingScheduler 安全中心怎么新建flink 环境_java_02