FlinkCEP是在Flink上层实现的复杂事件处理库。 它可以让你在无限事件流中检测出特定的事件模型,有机会掌握数据中重要的那部分。
官网文档: https://ci.apache.org/projects/flink/flink-docs-stable/zh/dev/libs/cep.html
这里给个demo,对比下不用cep和用cep的区别,
实现目标: 从目标csv中读取模拟登录的数据,实时检测,如果5秒钟之内连续登录的次数超过2次,则马上告警
按照之前的正常操作(非CEP实现)
实现步骤:
1、准备环境和数据源加载到内存
2、进行数据切割,转成需要的格式(样例类)
3、指定时间窗口watermark及事件时间取哪个字段
4、按每个用户id进行分组,统计每个用户id的登录行为(毕竟不能放一起统计吧)
5、实现具体的处理逻辑ProcessFunction
6、输出检测数据
准备的模拟数据 userLogin.csv:
1234,10.0.1.1,fail,1611373940
1235,10.0.1.2,fail,1611373941
1234,10.0.1.3,fail,1611373942
1234,10.0.1.3,success,1611373943
1234,10.0.1.3,fail,1611373943
1234,10.0.1.3,fail,1611373944
1236,10.0.1.4,fail,1611373945
1234,10.0.1.4,fail,1611373957
1234,10.0.1.5,fail,1611373958
1234,10.0.11.55,fail,1611373959
1236,2.2.2.2,fail,1611373960
/*
*
* @author mafei
* @date 2021/1/24
*/
package com.mafei
import org.apache.flink.api.common.state.{ListState, ListStateDescriptor, ValueState, ValueStateDescriptor}
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.functions.KeyedProcessFunction
import org.apache.flink.streaming.api.scala._
import org.apache.flink.util.Collector
import scala.collection.mutable.ListBuffer
/**
* 定义一个输入数据的样例类
*
* @param userId 用户id
* @param ip 客户端的ip
* @param loginState 登录状态,目前只有success/fail,后期可以做扩展,所以定义为string
* @param ts 事件的时间戳,单位秒
*/
case class userLogin(userId: Long,ip: String,loginState: String,ts: Long)
/**
* 定义一个输出的样例类
* @param userId 用户id
* @param startTs 开始登录时间
* @param endTs 触发事件的最后一次时间
* @param loginCount 时间段内总共登录的次数
*/
case class userLoginWarning(userId: Long, startTs: Long, endTs:Long, loginCount: Long)
object maliceLoginDetect {
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) //指定事件时间为窗口和watermark的时间
env.setParallelism(1)
//从文件中读取数据
val resource = getClass.getResource("/userLogin.csv")
val inputStream = env.readTextFile(resource.getPath)
// 转换成样例类,并提取时间戳watermark
val loginEventStream = inputStream
.map(d => {
val arr = d.split(",")
// 分别对应 userId ip 登录状态 时间戳
userLogin(arr(0).toLong, arr(1), arr(2), arr(3).toLong)
})
.assignAscendingTimestamps(_.ts * 1000L) //把秒转为毫秒
val loginWarningStream = loginEventStream
.keyBy(_.userId)
.process(new loginMaliceDetect(2))
loginWarningStream.print()
env.execute()
}
}
class loginMaliceDetect(warningCount: Long) extends KeyedProcessFunction[Long,userLogin,userLoginWarning]{
//定义状态,保存当前所有的登录事件为list,方便后边做数据统计
lazy val loginFailListState: ListState[userLogin] = getRuntimeContext.getListState(new ListStateDescriptor[userLogin]("loginFail-list", classOf[userLogin]))
//定义定时器的时间戳状态,否则没法删定时器
lazy val timerTsState: ValueState[Long] = getRuntimeContext.getState(new ValueStateDescriptor[Long]("timerState", classOf[Long]))
override def processElement(i: userLogin, context: KeyedProcessFunction[Long, userLogin, userLoginWarning]#Context, collector: Collector[userLoginWarning]): Unit = {
//判断,如果当前事件是登录失败事件,那再继续操作
if(i.loginState == "fail"){
loginFailListState.add(i)
//如果没有注册定时器,那就注册一个定时器,5秒之后触发
if(timerTsState.value()== 0){
val timerTs = i.ts * 1000L + 5000L
context.timerService().registerEventTimeTimer(timerTs)
timerTsState.update(timerTs)
}
}
else if(i.loginState == "success"){
context.timerService().deleteEventTimeTimer(timerTsState.value())
timerTsState.clear()
loginFailListState.clear()
}
}
override def onTimer(timestamp: Long, ctx: KeyedProcessFunction[Long, userLogin, userLoginWarning]#OnTimerContext, out: Collector[userLoginWarning]): Unit = {
// 判断下如果登录失败次数超过了设置的阈值,则告警
val loginFailList: ListBuffer[userLogin] = new ListBuffer[userLogin]
val iterable = loginFailListState.get().iterator()
while (iterable.hasNext){
loginFailList += iterable.next()
}
if (loginFailList.size > warningCount){
out.collect(userLoginWarning(userId = ctx.getCurrentKey, startTs = loginFailList.head.ts, endTs = loginFailList.last.ts, loginCount = loginFailList.size))
}
loginFailList.clear()
loginFailListState.clear()
timerTsState.clear()
}
}
代码结构及运行效果
使用flink CEP实现
上面代码栗子是可以实现基本的登录异常检测了,但是如果碰到数据乱序等情况,
有3个失败事件在时间范围内,但是有个乱序的数据插在中间,这时候按照逻辑中间就会情况重新计算。。这时候就需要用到flink提供的cep(复杂事件检测)的功能了
在pom.xml中增加cep的依赖
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
<flink.version>1.10.1</flink.version>
<scala.binary.version>2.12</scala.binary.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-cep-scala_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
</dependencies>
/*
*
* @author mafei
* @date 2021/1/24
*/
package com.mafei
import org.apache.flink.cep.PatternSelectFunction
import org.apache.flink.cep.scala.CEP
import org.apache.flink.cep.scala.pattern.Pattern
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.time.Time
import java.util
object maliceLoginDetectWithCep {
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) //指定事件时间为窗口和watermark的时间
env.setParallelism(1)
//从文件中读取数据
val resource = getClass.getResource("/userLogin.csv")
val inputStream = env.readTextFile(resource.getPath)
// 转换成样例类,并提取时间戳watermark
val loginEventStream = inputStream
.map(d => {
val arr = d.split(",")
// 分别对应 userId ip 登录状态 时间戳
userLogin(arr(0).toLong, arr(1), arr(2), arr(3).toLong)
})
.assignAscendingTimestamps(_.ts * 1000L) //把秒转为毫秒
// 1、先定义匹配的模式,需求为一个登录失败事件后,紧接着出现另一个失败事件
val loginFailPattern = Pattern
.begin[userLogin]("firstFail")
.where(_.loginState == "fail")
.next("secondFail")
.where(_.loginState == "fail")
.within(Time.seconds(5))
//2、将匹配的规则应用在数据流中,得到一个PatternStream
val patternStream = CEP.pattern(loginEventStream.keyBy(_.userId), loginFailPattern)
// 3、匹配中符合模式要求的数据流,需要调用select
val loginFailWarningStream = patternStream.select(new LoginFailEventMatch())
loginFailWarningStream.print()
env.execute("login fail detect with cep")
}
}
class LoginFailEventMatch() extends PatternSelectFunction[userLogin,userLoginWarning]{
override def select(map: util.Map[String, util.List[userLogin]]): userLoginWarning = {
//前边定义的所有pattern,都在Map里头,因为map的value里面只定义了一个事件,所以只会有一条,取第一个就可以,如果定义了多个,需要按实际情况来
val firstFailEvent = map.get("firstFail").get(0)
val secondFailEvent = map.get("secondFail").iterator().next()
userLoginWarning(firstFailEvent.userId,firstFailEvent.ts,secondFailEvent.ts,2)
}
}
代码结构及运行效果