一、简介:
计算部分gradAscent()
数据与标签均转换为numpy矩阵
" * " : 矩阵相乘
维度:
- 数据:100行3列(添加了常数项)
- 标签:100行一列
- 初始权重:3行一列
每轮循环步骤:
- 数据矩阵(100行3列) * 权重矩阵(3行一列),结果是100行一列
- 矩阵乘积(100行一列)代入 sigmoid()函数,结果是100行一列,即预测值
- 标签值(100行一列 ) 减去 预测值(100行一列),结果是100行一列,即计算误差(100行一列)
- 权重矩阵(三行一列) 加上 步长 * 数据矩阵转置(三行100列)* 误差(100行一列),结果是3行一列,即更新权重矩阵
参考:
逻辑回归:损失函数与梯度下降(公式推导):
逻辑回归原理(python代码实现)(似然理解,函数求导,代码实现(多个实现函数)都有):
二、梯度上升法:
函数:
导函数:
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
x = np.linspace(0,4)
y = -x**2 + 4*x
plt.plot(x,y,'-k')
# 写一下就明白了
def grad_ascent():
def f_prime(x_old):
return -2 * x_old + 4
x_old = 4
x_new = 0
alpha = 0.01
presission = 0.00000001
while(abs(x_new - x_old) > presission):
x_old = x_new
x_new = x_old + alpha *f_prime(x_old)
print(x_new)
grad_ascent()
1.999999515279857
数学表达式:
三、逻辑回归公式
似然函数:
梯度上升的梯度迭代公式:
梯度下降的迭代公式:
梯度上升与梯度下降其实就是同一个公式,只是梯度上升求导中前面没有取负号,
四、代码实现
注:
1、loadDataSet():
要添加常数项,
计算时,使用mat() 函数将数据转换为numpy矩阵,
2、计算部分gradAscent()
数据与标签均转换为numpy矩阵
" * " : 矩阵相乘
维度:
- 数据:100行3列(添加了常数项)
- 标签:100行一列
- 初始权重:3行一列
每轮循环步骤:
- 数据矩阵(100行3列) * 权重矩阵(3行一列),结果是100行一列
- 矩阵乘积(100行一列)代入 sigmoid()函数,结果是100行一列,即预测值
- 标签值(100行一列 ) 减去 预测值(100行一列),结果是100行一列,即计算误差(100行一列)
- 权重矩阵(三行一列) 加上 步长 * 数据矩阵转置(三行100列)* 误差(100行一列),结果是3行一列,即更新权重矩阵
from numpy import *
filename = 'testSet.txt'
def loadDataSet():
dataMat = []
labelMat = []
fr = open(filename)
for line in fr.readlines():
# Python strip() 方法用于移除字符串头尾指定的字符(默认为空格或换行符)或字符序列。
# Python split() 通过指定分隔符对字符串进行切片,如果参数 num 有指定值,则仅分隔 num 个子字符串
lineArr = line.strip().split()
# 前面的1,表示方程的常量。比如两个特征X1,X2,共需要三个参数,W1+W2*X1+W3*X2
dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])
labelMat.append(int(lineArr[2]))
return dataMat,labelMat
def sigmoid(inX):
return 1.0/(1+exp(-inX))
def gradAscent(dataMat,labelMat):
# 用mat函数转换为矩阵之后可以才进行一些线性代数的操作。
# 列表转换为矩阵,默认转换为一个行矩阵,所以需要transpose()转换为列矩阵
# transpose()作用是为转置
# ones()全一矩阵,zeros()全零矩阵,eyes()单位阵
# 矩阵,使用*是矩阵乘法,即行乘以列
# print(labelMat)
dataMatrix = mat(dataMat)
# print(mat(labelMat))
classLabels = mat(labelMat).transpose()
# print(classLabels)
m,n = shape(dataMatrix)
alpha = 0.001
maxCyle = 500
weights = ones((n,1))
for k in range(maxCyle):
h = sigmoid(dataMatrix*weights)
error = (classLabels-h)
weights = weights + alpha*dataMatrix.transpose()*error
# print(weights)
return weights
def plotBestFit(weights):
import matplotlib.pyplot as plt
dataMat,labelMat = loadDataSet()
dataArr = array(dataMat)
# print(dataArr)
n = shape(dataArr)[0]
xcord1 = []; ycord1 = []
xcord2 = []; ycord2 = []
for i in range(n):
if int(labelMat[i]) == 1:
xcord1.append(dataArr[i,1])
ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1])
ycord2.append(dataArr[i,2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1,ycord1,s=30,c='red',marker='s')
ax.scatter(xcord2,ycord2,s=30,c='green')
x = arange(-3.0,3.0,0.1)
y = (-weights[0]-weights[1]*x)/weights[2]
ax.plot(x,y)
plt.xlabel('x1')
plt.ylabel('x2')
plt.show()
def main():
dataMat,labelMat = loadDataSet()
weights = gradAscent(dataMat,labelMat).getA()
plotBestFit(weights)
if __name__ == "__main__":
main()
数据:
-0.017612 14.053064 0
-1.395634 4.662541 1
-0.752157 6.538620 0
-1.322371 7.152853 0
0.423363 11.054677 0
0.406704 7.067335 1
0.667394 12.741452 0
-2.460150 6.866805 1
0.569411 9.548755 0
-0.026632 10.427743 0
0.850433 6.920334 1
1.347183 13.175500 0
1.176813 3.167020 1
-1.781871 9.097953 0
-0.566606 5.749003 1
0.931635 1.589505 1
-0.024205 6.151823 1
-0.036453 2.690988 1
-0.196949 0.444165 1
1.014459 5.754399 1
1.985298 3.230619 1
-1.693453 -0.557540 1
-0.576525 11.778922 0
-0.346811 -1.678730 1
-2.124484 2.672471 1
1.217916 9.597015 0
-0.733928 9.098687 0
-3.642001 -1.618087 1
0.315985 3.523953 1
1.416614 9.619232 0
-0.386323 3.989286 1
0.556921 8.294984 1
1.224863 11.587360 0
-1.347803 -2.406051 1
1.196604 4.951851 1
0.275221 9.543647 0
0.470575 9.332488 0
-1.889567 9.542662 0
-1.527893 12.150579 0
-1.185247 11.309318 0
-0.445678 3.297303 1
1.042222 6.105155 1
-0.618787 10.320986 0
1.152083 0.548467 1
0.828534 2.676045 1
-1.237728 10.549033 0
-0.683565 -2.166125 1
0.229456 5.921938 1
-0.959885 11.555336 0
0.492911 10.993324 0
0.184992 8.721488 0
-0.355715 10.325976 0
-0.397822 8.058397 0
0.824839 13.730343 0
1.507278 5.027866 1
0.099671 6.835839 1
-0.344008 10.717485 0
1.785928 7.718645 1
-0.918801 11.560217 0
-0.364009 4.747300 1
-0.841722 4.119083 1
0.490426 1.960539 1
-0.007194 9.075792 0
0.356107 12.447863 0
0.342578 12.281162 0
-0.810823 -1.466018 1
2.530777 6.476801 1
1.296683 11.607559 0
0.475487 12.040035 0
-0.783277 11.009725 0
0.074798 11.023650 0
-1.337472 0.468339 1
-0.102781 13.763651 0
-0.147324 2.874846 1
0.518389 9.887035 0
1.015399 7.571882 0
-1.658086 -0.027255 1
1.319944 2.171228 1
2.056216 5.019981 1
-0.851633 4.375691 1
-1.510047 6.061992 0
-1.076637 -3.181888 1
1.821096 10.283990 0
3.010150 8.401766 1
-1.099458 1.688274 1
-0.834872 -1.733869 1
-0.846637 3.849075 1
1.400102 12.628781 0
1.752842 5.468166 1
0.078557 0.059736 1
0.089392 -0.715300 1
1.825662 12.693808 0
0.197445 9.744638 0
0.126117 0.922311 1
-0.679797 1.220530 1
0.677983 2.556666 1
0.761349 10.693862 0
-2.168791 0.143632 1
1.388610 9.341997 0
0.317029 14.739025 0
五、使用SKLearn构建逻辑回归
疝气病症状预测病马的死亡率,
原始数据集下载地址:http://archive.ics.uci.edu/ml/datasets/Horse+Colic
这里的数据包含了368个样本和28个特征。
原始的数据集经过处理,保存为两个文件:horseColicTest.txt和horseColicTraining.txt。
局部数据:
可以发现,SKLearn主要代码也就两行:
classifier = LogisticRegression(solver='liblinear',max_iter=10).fit(trainingSet, trainingLabels)
test_accurcy = classifier.score(testSet, testLabels) * 100
from sklearn.linear_model import LogisticRegression
def colicSklearn():
frTrain = open('horseColicTraining.txt') #打开训练集
frTest = open('horseColicTest.txt') #打开测试集
trainingSet = []; trainingLabels = []
testSet = []; testLabels = []
for line in frTrain.readlines():
currLine = line.strip().split('\t')
lineArr = []
for i in range(len(currLine)-1):
lineArr.append(float(currLine[i]))
trainingSet.append(lineArr)
trainingLabels.append(float(currLine[-1]))
for line in frTest.readlines():
currLine = line.strip().split('\t')
lineArr =[]
for i in range(len(currLine)-1):
lineArr.append(float(currLine[i]))
testSet.append(lineArr)
testLabels.append(float(currLine[-1]))
classifier = LogisticRegression(solver='liblinear',max_iter=10).fit(trainingSet, trainingLabels)
test_accurcy = classifier.score(testSet, testLabels) * 100
print('正确率:%f%%' % test_accurcy)
if __name__ == '__main__':
colicSklearn()
结果:
正确率:73.134328%