模型是处理输入以生成输出的连接层的集合。你可以使用nn包来定义模型。nn包提供了一般深度学习层的模块集合。nn的一个模块或层接收输入张量,计算输出张量,并获得权重。在PyTorch中,我们可以使用两种方法定义模型:nn.Sequential和 nn.Module。

定义一个线性层

让我们创建一个线性层并且打印输出尺寸

from torch import nn
import torch
# input tensor dimension 64*1000
input_tensor = torch.randn(64, 1000)

# linear layer with 1000 inputs and 100 outputs
linear_layer = nn.Linear(1000, 100)

# output of the linear layer
output = linear_layer(input_tensor)
print(output.size())

# torch.Size([64, 100])

使用nn.Sequential定义模型

我们可以使用nn.Sequential通过按顺序创建层来构建一个深度学习模型。

  1. 使用nn.Sequential实现模型:
from torch import nn
# define a two-layer model
model = nn.Sequential(
	nn.Linear(4, 5),
	nn.ReLU(),
	nn.Linear(5, 1),
)
print(model)

# Sequential(
#	(0): Linear(in_features=4, out_features=5, bias=True)
#	(1): ReLU()
#	(2): Linear(in_features=5, out_features=1, bias=True)
#)

使用nn.Module定义模型

PyTorch中,使用nn.Module的子类也可以创建模型。首先在类的__init__方法中指定要定义的层,然后在forward方法中,把输入应用于这些层,该方法对于构建定制的模型更灵活。

  1. 首先,实现类的大概框架
import torch.nn.functional as F
class Net(nn.Module):
	def __init__(self):
		super(Net, self).__init__()
	def forward(self, x):
		pass

2.我们定义__init__函数:

def __init__(self):
	super(Net, self).__init__()
	self.conv1 = nn.Conv2d(1, 20, 5, 1)
	self.conv2 = nn.Conv2d(20, 50, 5, 1)
	self.fc1 = nn.Linear(4*4*50, 500)
	self.fc2 = nn.Linear(500, 10)

3.然后,我们定义forward函数:

def forward(self, x):
	x = F.relu(self.conv1(x))
	x = F.max_pool2d(x, 2, 2)
	x = F.relu(self.conv2(x))
	x = F.max_pool2d(x, 2, 2)
	x = x.view(-1, 4*4*50)
	x = F.relu(self.fc1(x))
	x = self.fc2(x)
	return F.log_softmax(x, dim=1)

4.然后,我们将重写这两个类函数,init 和 forward

Net.__init__ = __init__
Net.forward = forward

5.下一步,我们将创建一个Net类对象并且打印模型

model = Net()
print(model)

# Net(
# 	(conv1): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
# 	(conv2): Conv2d(20, 50, kernel_size=(5, 5), stride=(1, 1))
# 	(fc1): Linear(in_features=800, out_features=500, bias=True)
# 	(fc2): Linear(in_features=500, out_features=10, bias=True)
# )

将模型移到GPU上

一个模型就是参数的集合,模型默认构建在CPU上:

  1. 获取模型设备
print(next(model.parameters()).device)

# cpu
  1. 然后,把模型移到GPU上
device = torch.device("cuda:0")
model.to(device)
print(next(model.parameters()).device)

# cuda:0

打印模型摘要

通过打印模型摘要,我们可以获得模型每层的输出形状以及参数量。

  1. 安装torchsummary包
pip install torchsummary
  1. 使用torchsummary来获得模型摘要
from torchsummary import summary
summary(model, input_size=(1, 28, 28))

pytorch 模型推理过程内存占用 pytorch模型大小_损失函数

定义损失函数和优化器

损失函数用来计算模型输出与标签之间的距离,也叫做objective function(目标函数)、cost function(代价函数)以及criterion(评判标准)。对于分类问题,一般使用交叉熵损失。
在训练期间,使用optimizer(优化器)来更新模型参数(也称作权重)。PyTorch的optim包提供了各种优化算法,包括SGD以及它的变体Adam, RMSprop等。

定义损失函数

  1. 首先,定义负对数损失
from torch import nn
loss_func = nn.NLLLoss(reduction="sum")
  1. 在小批量数据上测试损失函数
    train_dl来自于Pytorch基础知识(2)数据的导入与预处理
# train_dl来自于Pytorch基础知识(2)数据的导入与预处理
for xb, yb in train_dl:
	# move batch to cuda device
	xb = xb.type(torch.float).to(device)
	yb = yb.to(device)
	# get model output
	out = model(xb)
	# calculate loss value
	loss = loss_func(out, yb)
	print(loss.item())
	break
# 72.04580688476562
  1. 计算模型参数的梯度
# compute gradients
loss.backward()

定义优化器

  1. 定义Adam优化器
from torch import optim
opt = optim.Adam(model.parameters(), lr=1e-4)
  1. 设置梯度为0
# set gradients to zero
opt.zero_grad()
  1. 更新模型参数
# update model parameters
opt.step()

训练和评估

  1. 计算每小批次损失值的函数
def loss_batch(loss_func, xb, yb, yb_h, opt=None):
	# obtain loss
	loss = loss_func(yb_h, yb)
	# obtain performance metric
	metric_b = metrics_batch(yb, yb_h)
	if opt is not None:
		loss.backward()
		opt.step()
		opt.zero_grad()
	return loss.item(), metric_b
  1. 计算每小批次的准确率
def metrics_batch(target, output):
	# obtain output class
	pred = output.argmax(dim=1, keepdim=True)
	# compare output class with target class
	corrects = pred.eq(target.view_as(pred)).sum().item()
	return corrects
  1. 计算整个数据上的损失和准确率
def loss_epoch(model, loss_func, dataset_dl, opt=None):
	loss = 0.0
	metric=0.0
	len_data = len(dataset_dl.dataset)
	for xb, yb in dataset_dl:
		xb = xb.type(torch.float).to(device)
		yb = yb.to(device)
		# obtain model output
		yb_h = model(xb)
		
		loss_b, metric_b = loss_batch(loss_func, xb, yb, yb_h, opt)
		loss += loss_b
		if metric_b is not None:
			metric+=metric_b
	loss/=len_data
	metric/=len_data
	return loss, metric
  1. 最后,定义train_val函数
def train_val(epochs, model, loss_func, opt, train_dl, val_dl):
	for epoch in range(epochs):
		model.train()
		train_loss, train_metric = loss_epoch(model, loss_func, train_dl, opt)
		model.eval()
		with torch.no_grad():
			val_loss, val_metric= loss_epoch(model, loss_func, val_dl)
		accuracy = 100 * val_metric
		print("epoch: %d, train loss: %.6f, val loss: %.6f, accuracy: %.2f" % (epoch, train_loss, val_loss, accuracy))
  1. 训练模型
# call train_val function
num_epochs=5
train_val(num_epochs, model, loss_func, opt, train_dl, val_dl)

获得如下结果:

pytorch 模型推理过程内存占用 pytorch模型大小_2d_02

保存和导入模型

方法一:

  1. 首先,我们保存模型参数或者字典到文件:
# define path2weights
path2weights="./models/weights.pt"
# store state_dict to file
torch.save(model.state_dict(), path2weights)
  1. 导入模型参数之前,创建一个模型实例
# define model: weights are randomly initiated
_model = Net()
  1. 从文件中导入模型参数
weights = torch.load(path2weights)
  1. 将参数设置到模型中
_model.load_state_dict(weights)

方法二:

  1. 首先把模型存储到文件中
# define a path2model
path2model = "./models/model.pt"
# store model and weights into a file
torch.save(model, path2model)
  1. 导入模型
_model=torch.load(path2model)

pytorch模型导入综述:

# Load all tensors onto the CPU
>>> torch.load('tensors.pt', map_location=torch.device('cpu'))
# Load all tensors onto the CPU, using a function
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage)
# Load all tensors onto GPU 1
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage.cuda(1))
# Map tensors from GPU 1 to GPU 0
>>> torch.load('tensors.pt', map_location={'cuda:1':'cuda:0'})
# Load tensor from io.BytesIO object
>>> with open('tensor.pt', 'rb') as f:
        buffer = io.BytesIO(f.read())
>>> torch.load(buffer)
# Load a module with 'ascii' encoding for unpickling
>>> torch.load('module.pt', encoding='ascii')

根据操作系统自动选择num_worker数值:

num_workers = 0 if sys.platform.startswith('win32') else 4

注意:nvidia-smi查看到的CUDA Version是cuda driver version,也是表明当前显卡驱动支持的最高版本的CUDA版本号。我们自己安装的的CUDA叫做cuda runtime version。