Python数据分析必备工具——数据可视化Matplotlib模块及其应用
- 离散型数据的可视化
- 饼图
- 条形图
- 连续性数据的可视化
- 直方图
- 箱线图
- 折线图
- 关系型数据的可视化
- 散点图
- 气泡图
- 热力图
- 多图形的组合
离散型数据的可视化
饼图
概念:
饼图属于最传统的统计图形之一,几乎随处可见,例如大型公司的屏幕墙、各种年度论坛的演
示稿以及各大媒体发布的数据统计报告等;
饼图是将一个圆分割成不同大小的楔(扇)形,而圆中的每一个楔形代表了不同的类别值,通
常根据楔形的面积大小来判断类别值的差异;
函数:
pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, labeldistance=1.1)
x:指定绘图的数据
explode:指定饼图某些部分的突出显示,即呈现爆炸式
labels:为饼图添加标签说明,类似于图例说明
colors:指定饼图的填充色
autopct:自动添加百分比显示,可以采用格式化的方法显示
pctdistance:设置百分比标签与圆心的距离
labeldistance:设置各扇形标签(图例)与圆心的距离
示例:
- 普通绘制
# 导入第三方模块
import matplotlib.pyplot as plt
# 设置中文能显示的简体黑字体
plt.rcParams['font.sans-serif']=['SimHei']
# 构造数据
edu = [0.2515,0.3724,0.3336,0.0368,0.0057]
labels = ['中专','大专','本科','硕士','其他']
# 绘制饼图 plt.axes(aspect='equal')
plt.pie(x = edu, # 绘图数据
labels=labels, # 添加教育水平标签
autopct='%.1f%%' # 设置百分比的格式,这里保留一位小数
)
# 显示图形
plt.show()
- 当我们用上突出显示绘制
# 导入第三方模块
import matplotlib.pyplot as plt
# 设置中文能显示的简体黑字体
plt.rcParams['font.sans-serif']=['SimHei']
# 构造数据
edu = [0.2515,0.3724,0.3336,0.0368,0.0057]
labels = ['中专','大专','本科','硕士','其他']
explode = [0,0.1,0,0,0]
# 绘制饼图
# 用来将饼图为圆 plt.axes(aspect='equal')
plt.pie(x = edu, # 绘图数据
labels=labels, # 添加教育水平标签
autopct='%.1f%%', # 设置百分比的格式,这里保留一位小数
explode = explode
)
# 显示图形
plt.show()
输出:
1.
2.
条形图
概念:
虽然饼图可以很好地表达离散型变量在各水平上的差异,但其不擅长对比差异不大或水平值过多的离散型变量,因为饼图是通过各扇形面积的大小来比价差异的,面积的比较有时并不直观;
对于条形图而言,对比的是柱形的高低,柱体越高,代表的数值越大,反之亦然;
函数:
bar(x, height, width=0.8, bottom=None, color=None, edgecolor=None, tick_label=None, label = None, ecolor=None)
x:传递数值序列,指定条形图中x轴上的刻度值
height:传递数值序列,指定条形图y轴上的高度
width:指定条形图的宽度,默认为0.8
bottom:用于绘制堆叠条形图
color:指定条形图的填充色
edgecolor:指定条形图的边框色
tick_label:指定条形图的刻度标签
label:指定条形图的标签,一般用以添加图例
示例1:
# 导入第三方模块
import matplotlib.pyplot as plt
import pandas as pd
# 读入数据
GDP = pd.read_excel(r'D:\pythonProject\data\\Province GDP 2017.xlsx')
# 设置绘图风格(使用R语言中的ggplot2风格)
plt.style.use('ggplot')
# 绘制条形图
plt.bar(x = range(GDP.shape[0]), # 指定条形图x轴的刻度值
height = GDP.GDP, # 指定条形图y轴的数值
tick_label = GDP.Province, # 指定条形图x轴的刻度标签
color = 'steelblue', # 指定条形图的填充色
)
# 添加y轴的标签
plt.ylabel('GDP(万亿)')
# 添加条形图的标题
plt.title('2017年度6个省份GDP分布')
# 为每个条形图添加数值标签
for x,y in enumerate(GDP.GDP):
plt.text(x,y+0.1,'%s' %round(y,1),ha='center')
# 显示图形
plt.show()
输出1:
示例2:
按顺序排列,水平条形图。
# 导入第三方模块
import matplotlib.pyplot as plt
import pandas as pd
# 读入数据
GDP = pd.read_excel(r'D:\pythonProject\data\\Province GDP 2017.xlsx')
# 设置绘图风格(使用R语言中的ggplot2风格)
plt.style.use('ggplot')
# 对读入的数据做升序排序
GDP.sort_values(by = 'GDP', inplace = True)
# 绘制条形图
plt.barh(y = range(GDP.shape[0]), # 指定条形图y轴的刻度值
width = GDP.GDP, # 指定条形图x轴的数值
tick_label = GDP.Province, # 指定条形图y轴的刻度标签
color = 'steelblue', # 指定条形图的填充色
)
# 添加x轴的标签
plt.xlabel('GDP(万亿)')
# 添加条形图的标题
plt.title('2017年度6个省份GDP分布')
# 为每个条形图添加数值标签
for y,x in enumerate(GDP.GDP):
plt.text(x+0.1,y,'%s' %round(x,1),va='center')
# 显示图形
plt.show()
输出2:
示例3:
# 导入第三方模块
import matplotlib.pyplot as plt
import pandas as pd
# 读入数据
HuRun = pd.read_excel(r'D:\pythonProject\data\\HuRun.xlsx')
# 设置绘图风格(使用R语言中的ggplot2风格)
plt.style.use('ggplot')
# Pandas模块之水平交错条形图(pivot_table透视表功能,创建新表格)
HuRun_reshape = HuRun.pivot_table(index = 'City', columns='Year', values='Counts').reset_index()
# 对数据集降序排序
HuRun_reshape.sort_values(by = 2016, ascending = False, inplace = True)
HuRun_reshape.plot(x = 'City', y = [2016,2017], kind = 'bar',
color = ['steelblue', 'indianred'],
# 用于旋转x轴刻度标签的角度,0表示水平显示刻度标签
rot = 0,
width = 0.8, title = '近两年5个城市亿万资产家庭数比较')
# 添加y轴标签
plt.ylabel('亿万资产家庭数')
plt.xlabel('')
plt.show()
输出3:
连续性数据的可视化
直方图
概念:
直方图一般用来观察数据的分布形态,横坐标代表数值的均匀分段,纵坐标代表每个段内的观测数量(频数);
一般直方图都会与核密度图搭配使用,目的是更加清晰地掌握数据的分布特征;
函数:
plt.hist(x, bins=10, normed=False, orientation=‘vertical’, color=None, label=None)
x:指定要绘制直方图的数据。
bins:指定直方图条形的个数。
normed:是否将直方图的频数转换成频率。
orientation:设置直方图的摆放方向,默认为垂直方向
color:设置直方图的填充色
edgecolor:设置直方图边框色
label:设置直方图的标签,可通过legend展示其图例
示例:
# 导入第三方模块
import matplotlib.pyplot as plt
import pandas as pd
# 读入数据
Titanic = pd.read_csv(r'D:\pythonProject\data\titanic_train.csv')
# 检查年龄是否有缺失(如果数据中存在缺失值,将无法绘制直方图)
any(Titanic.Age.isnull())
# 不妨删除含有缺失年龄的观察
Titanic.dropna(subset=['Age'], inplace=True)
# 绘制直方图
plt.hist(x = Titanic.Age, # 指定绘图数据
bins = 20, # 指定直方图中条块的个数
color = 'steelblue', # 指定直方图的填充色
edgecolor = 'black' # 指定直方图的边框色
)
# 添加x轴和y轴标签
plt.xlabel('年龄')
plt.ylabel('频数')
# 添加标题
plt.title('乘客年龄分布')
# 显示图形
plt.show()
输出:
箱线图
概念:
箱线图是另一种体现数据分布的图形,通过该图可以得知数据的下须值(Q1-1.5IQR)、下四分位数(Q1)、中位数(Q2)、均值、上四分位(Q3)数和上须值(Q3+1.5IQR),更重要的是,箱线图还可以发现数据中的异常点;
函数:
plt.boxplot(x, vert=None, whis=None, patch_artist=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None, labels=None, flierprops=None, medianprops=None, meanprops=None, capprops=None, whiskerprops=None)
x:指定要绘制箱线图的数据
vert:是否需要将箱线图垂直摆放,默认垂直摆放
whis:指定上下须与上下四分位的距离,默认为1.5倍的四分位差
patch_artist:bool类型参数,是否填充箱体的颜色;默认为False
meanline:bool类型参数,是否用线的形式表示均值,默认为False
showmeans:bool类型参数,是否显示均值,默认为False
showcaps:bool类型参数,是否显示箱线图顶端和末端的两条线(即上下须),默认为True
showbox:bool类型参数,是否显示箱线图的箱体,默认为True
showfliers:是否显示异常值,默认为True
boxprops:设置箱体的属性,如边框色,填充色等
labels:为箱线图添加标签,类似于图例的作用
filerprops:设置异常值的属性,如异常点的形状、大小、填充色等
medianprops:设置中位数的属性,如线的类型、粗细等
meanprops:设置均值的属性,如点的大小、颜色等
capprops:设置箱线图顶端和末端线条的属性,如颜色、粗细等
whiskerprops:设置须的属性,如颜色、粗细、线的类型等
示例:
# 导入第三方模块
import matplotlib.pyplot as plt
import pandas as pd
# 读入数据
Sec_Buildings = pd.read_excel(r'D:\pythonProject\data\sec_buildings.xlsx')
# 绘制箱线图
plt.boxplot(x = Sec_Buildings.price_unit, # 指定绘图数据
patch_artist=True, # 要求用自定义颜色填充盒形图,默认白色填充
showmeans=True, # 以点的形式显示均值
boxprops = {'color':'black','facecolor':'steelblue'},# 设置箱体属性,如边框色和填充色
# 设置异常点属性,如点的形状、填充色和点的大小
flierprops = {'marker':'o','markerfacecolor':'red', 'markersize':3},
# 设置均值点的属性,如点的形状、填充色和点的大小
meanprops = {'marker':'D','markerfacecolor':'indianred', 'markersize':4},
# 设置中位数线的属性,如线的类型和颜色
medianprops = {'linestyle':'--','color':'orange'},
labels = [''] # 删除x轴的刻度标签,否则图形显示刻度标签为1
)
# 添加图形标题
plt.title('二手房单价分布的箱线图')
# 显示图形
plt.show()
输出:
折线图
概念:
对于时间序列数据而言,一般都会使用折线图反映数据背后的趋势。通常折线图的横坐标指代
日期数据,纵坐标代表某个数值型变量,当然还可以使用第三个离散变量对折线图进行分组处
理;
函数:
plt.plot(x, y, linestyle, linewidth, color, marker, markersize, markeredgecolor, markerfactcolor,markeredgewidth, label, alpha)
x:指定折线图的x轴数据
y:指定折线图的y轴数据
linestyle:指定折线的类型,可以是实线、虚线、点虚线、点点线等,默认为实线
linewidth:指定折线的宽度
marker:可以为折线图添加点,该参数是设置点的形状
markersize:设置点的大小
markeredgecolor:设置点的边框色
markerfactcolor:设置点的填充色
markeredgewidth:设置点的边框宽度
label:为折线图添加标签,类似于图例的作用
示例:
# 导入第三方模块
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib as mpl
# 数据读取
wechat = pd.read_excel(r'D:\pythonProject\data\wechat.xlsx')
# 绘制单条折线图
plt.plot(wechat.Date, # x轴数据
wechat.Counts, # y轴数据
linestyle = '-', # 折线类型
linewidth = 2, # 折线宽度
color = 'steelblue', # 折线颜色
marker = 'o', # 折线图中添加圆点
markersize = 6, # 点的大小
markeredgecolor='black', # 点的边框色
markerfacecolor='brown' # 点的填充色
)
# 修改x轴坐标的显示
# 获取图的坐标信息
ax = plt.gca()
# 设置日期的显示格式
date_format = mpl.dates.DateFormatter("%m-%d")
ax.xaxis.set_major_formatter(date_format)
# 设置x轴每个刻度的间隔天数
xlocator = mpl.ticker.MultipleLocator(7)
ax.xaxis.set_major_locator(xlocator)
# 为了避免x轴刻度标签的紧凑,将刻度标签旋转45°
plt.xticks(rotation=45)
# 添加y轴标签
plt.ylabel('人数')
# 添加图形标题
plt.title('每天微信文章阅读人数趋势')
# 显示图形
plt.show()
输出:
关系型数据的可视化
散点图
概念:
如果需要研究两个数值型变量之间是否存在某种关系,例如正向的线性关系,或者是趋势性的
非线性关系,那么散点图将是最佳的选择;
函数:
scatter(x, y, s=20, c=None, marker=‘o’, alpha=None, linewidths=None, edgecolors=None)
x:指定散点图的x轴数据
y:指定散点图的y轴数据
s:指定散点图点的大小,默认为20,通过传入其他数值型变量,可以实现气泡图的绘制
c:指定散点图点的颜色,默认为蓝色,也可以传递其他数值型变量,通过cmap参数的色阶表示数值大小
marker:指定散点图点的形状,默认为空心圆
alpha:设置散点的透明度
linewidths:设置散点边界线的宽度
edgecolors:设置散点边界线的颜色
示例:
# 导入第三方模块
import matplotlib.pyplot as plt
import pandas as pd
# 设置中文能显示的简体黑字体
plt.rcParams['font.sans-serif']=['SimHei']
# 读入数据
iris = pd.read_csv(r'D:\pythonProject\data\iris.csv')
# 绘制散点图
plt.scatter(x = iris.Petal_Width, # 指定散点图的x轴数据
y = iris.Petal_Length, # 指定散点图的y轴数据
color = 'steelblue' # 指定散点图中点的颜色
)
# 添加x轴和y轴标签
plt.xlabel('花瓣宽度')
plt.ylabel('花瓣长度')
# 添加标题
plt.title('鸢尾花的花瓣宽度与长度关系')
# 显示图形
plt.show()
输出:
气泡图
概念:
气泡图的实质就是通过第三个数值型变量控制每个散点的大小,点越大,代表的第三维数值越
高,反之亦然;
气泡图的绘制,使用的仍然是scatter函数,区别在于函数的s参数被赋予了具体的数值型变量;
示例:
# 导入第三方模块
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib as mpl
# 设置中文能显示的简体黑字体
plt.rcParams['font.sans-serif']=['SimSun']
# 用来正常显示负号
plt.rcParams['axes.unicode_minus']=False
# 读取数据
Prod_Category = pd.read_excel(r'D:\pythonProject\data\SuperMarket.xlsx')
# 设置绘图风格(使用R语言中的ggplot2风格)
plt.style.use('ggplot')
# 将利润率标准化到[0,1]之间(因为利润率中有负数),然后加上微小的数值0.001
range_diff = Prod_Category.Profit_Ratio.max()-Prod_Category.Profit_Ratio.min()
Prod_Category['std_ratio'] = (Prod_Category.Profit_Ratio-Prod_Category.Profit_Ratio.min())/range_diff + 0.001
# 绘制办公用品的气泡图
plt.scatter(x = Prod_Category.Sales[Prod_Category.Category == '办公用品'],
y = Prod_Category.Profit[Prod_Category.Category == '办公用品'],
s = Prod_Category.std_ratio[Prod_Category.Category == '办公用品']*1000,
color = 'steelblue', label = '办公用品', alpha = 0.6
)
# 绘制技术产品的气泡图
plt.scatter(x = Prod_Category.Sales[Prod_Category.Category == '技术产品'],
y = Prod_Category.Profit[Prod_Category.Category == '技术产品'],
s = Prod_Category.std_ratio[Prod_Category.Category == '技术产品']*1000,
color = 'indianred' , label = '技术产品', alpha = 0.6
)
# 绘制家具产品的气泡图
plt.scatter(x = Prod_Category.Sales[Prod_Category.Category == '家具产品'],
y = Prod_Category.Profit[Prod_Category.Category == '家具产品'],
s = Prod_Category.std_ratio[Prod_Category.Category == '家具产品']*1000,
color = 'black' , label = '家具产品', alpha = 0.6
)
# 添加x轴和y轴标签
plt.xlabel('销售额')
plt.ylabel('利润')
# 添加标题
plt.title('销售额、利润及利润率的气泡图')
# 添加图例
plt.legend()
# 显示图形
plt.show()
输出:
热力图
概念:
热力图也称为交叉填充表,图形最典型的用法就是实现列联表的可视化,即通过图形的方式展
现两个离散变量之间的组合关系;
函数:
sns.heatmap(data, cmap=None, annot=None, fmt=‘.2g’, annot_kws=None, linewidths=0, linecolor='white)
data:指定绘制热力图的数据集
cmap:指定一个colormap对象,用于热力图的填充色
annot:指定一个bool类型的值或与data参数形状一样的数组,如果为True,就在热力图的每个单元上显示数值
fmt:指定单元格中数据的显示格式
annot_kws:有关单元格中数值标签的其他属性描述,如颜色、大小等
linewidths :指定每个单元格的边框宽度
linecolor:指定每个单元格的边框颜色
示例:
matplotlib版本过高可能会出现问题,我们可以通过降版本解决问题。
查看版本
import matplotlib
matplotlib.version修改版本
pip install --upgrade matplotlib==3.5.1
# 导入第三方模块
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sns
# 设置中文能显示的简体黑字体
plt.rcParams['font.sans-serif']=['SimSun']
# 读取数据
Sales = pd.read_excel(r'D:\pythonProject\data\Sales.xlsx')
# 根据交易日期,衍生出年份和月份字段
Sales['year'] = Sales.Date.dt.year
Sales['month'] = Sales.Date.dt.month
# 统计每年各月份的销售总额(绘制热力图之前,必须将数据转换为交叉表形式,即透视表)
Summary = Sales.pivot_table(index = 'month', columns = 'year', values = 'Sales', aggfunc = np.sum)
# 绘制热力图
sns.heatmap(data = Summary, # 指定绘图数据
cmap = 'PuBuGn', # 指定填充色
linewidths = .1, # 设置每个单元格边框的宽度
annot = True, # 显示数值
fmt = '.1e' # 以科学计算法显示数据,保留一位
)
#添加标题
plt.title('每年各月份销售总额热力图')
# 显示图形
plt.show()
输出:
多图形的组合
概念:
工作中往往会根据业务需求,将绘制的多个图形组合到一个大图框内,形成类似仪表板的效果;
函数:
plt.subplot2grid(shape, loc, rowspan=1, colspan=1, **kwargs)
shape:指定组合图的框架形状,以元组形式传递,如2×3的矩阵可以表示成(2,3)
loc:指定子图所在的位置,如shape中第一行第一列可以表示成(0,0)
rowspan:指定某个子图需要跨几行
colspan:指定某个子图需要跨几列
示例1:
# 导入第三方模块
import matplotlib.pyplot as plt
# 设置大图框的长和高
plt.figure(figsize = (12,6))
# 设置第一个子图的布局
ax1 = plt.subplot2grid(shape = (2,3), loc = (0,0))
# 设置第二个子图的布局
ax2 = plt.subplot2grid(shape = (2,3), loc = (0,1))
# 设置第三个子图的布局
ax3 = plt.subplot2grid(shape = (2,3), loc = (0,2), rowspan = 2)
# 设置第四个子图的布局
ax4 = plt.subplot2grid(shape = (2,3), loc = (1,0), colspan = 2)
输出1:
示例2:
# 导入第三方模块
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sns
# 设置中文能显示的简体黑字体
plt.rcParams['font.sans-serif']=['SimSun']
# 用来正常显示负号
plt.rcParams['axes.unicode_minus']=False
# 读取数据
Prod_Trade = pd.read_excel(r'D:\pythonProject\data\Prod_Trade.xlsx')
# 衍生出交易年份和月份字段
Prod_Trade['year'] = Prod_Trade.Date.dt.year
Prod_Trade['month'] = Prod_Trade.Date.dt.month
# 设置大图框的长和高
plt.figure(figsize = (12,6))
# 设置第一个子图的布局
ax1 = plt.subplot2grid(shape = (2,3), loc = (0,0))
# 统计2012年各订单等级的数量
Class_Counts = Prod_Trade.Order_Class[Prod_Trade.year == 2012].value_counts()
Class_Percent = Class_Counts/Class_Counts.sum()
# 将饼图设置为圆形(否则有点像椭圆)
ax1.set_aspect(aspect = 'equal')
# 绘制订单等级饼图
ax1.pie(x = Class_Percent.values, labels = Class_Percent.index, autopct = '%.1f%%')
# 添加标题
ax1.set_title('各等级订单比例')
# 设置第二个子图的布局
ax2 = plt.subplot2grid(shape = (2,3), loc = (0,1))
# 统计2012年每月销售额
Month_Sales = Prod_Trade[Prod_Trade.year == 2012].groupby(by = 'month').aggregate({'Sales':np.sum})
# 绘制销售额趋势图
Month_Sales.plot(title = '2012年各月销售趋势', ax = ax2, legend = False)
# 删除x轴标签
ax2.set_xlabel('')
# 设置第三个子图的布局
ax3 = plt.subplot2grid(shape = (2,3), loc = (0,2), rowspan = 2)
# 绘制各运输方式的成本箱线图
sns.boxplot(x = 'Transport', y = 'Trans_Cost', data = Prod_Trade, ax = ax3)
# 添加标题
ax3.set_title('各运输方式成本分布')
# 删除x轴标签
ax3.set_xlabel('')
# 修改y轴标签
ax3.set_ylabel('运输成本')
# 设置第四个子图的布局
ax4 = plt.subplot2grid(shape = (2,3), loc = (1,0), colspan = 2)
# 2012年客单价分布直方图
sns.distplot(Prod_Trade.Sales[Prod_Trade.year == 2012], bins = 40, norm_hist = True, ax = ax4, hist_kws = {'color':'steelblue'}, kde_kws=({'linestyle':'--', 'color':'red'}))
# 添加标题
ax4.set_title('2012年客单价分布图')
# 修改x轴标签
ax4.set_xlabel('销售额')
# 调整子图之间的水平间距和高度间距
plt.subplots_adjust(hspace=0.6, wspace=0.3)
# 图形显示
plt.show()
输出2: