凸包问题
求解凸包问题:输入是平面上n个点的集合Q,凸包问题是要输出一个Q的凸包。其中,Q的凸包是一个凸多边形P,Q中的点或者在P上或者在P中。
实现基于枚举方法的凸包求解算法
提示:考虑Q中的任意四个点A、B、C、D,如果A处于BCD构成的三角形内部,那么A一定不属于凸包P的顶点集合。
这一方法属于暴力解法,任意枚举点集中的四个点,如果有一个点在其他三个点构成的三角形内部,则将这个点从点集中剔除。实验主要是通过python来实现的,先定义一个平面点类。代码自动生成二维平面[0,0]到[100,100]的数据集,四重循环逐一进行判断。列举关键代码如下:
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
self.angle=0
from Point import Point
import random
import matplotlib.pyplot as plt
#判断p4是否在p1,p2,p3构成的三角形中
def istriangle(a,b,c,p):
signOfTrig = (b.x - a.x)*(c.y - a.y) - (b.y - a.y)*(c.x - a.x);
signOfAB = (b.x - a.x)*(p.y - a.y) - (b.y - a.y)*(p.x - a.x);
signOfCA = (a.x - c.x)*(p.y - c.y) - (a.y - c.y)*(p.x - c.x);
signOfBC = (c.x - b.x)*(p.y - b.y) - (c.y - b.y)*(p.x - b.x);
d1 = (signOfAB * signOfTrig > 0)
d2 = (signOfCA * signOfTrig > 0)
d3 = (signOfBC * signOfTrig > 0)
return d1 and d2 and d3
def generate_data(size,data,data_o):
for i in range(size):
#x=random.randint(0,100)
#y=random.randint(0,100)
x=random.uniform(0,100)
y=random.uniform(0,100)
p=Point(x,y)
data_o.append(p)
return data,data_o
def d(A,B,P):
ans=(B.x - A.x)*(P.y - A.y) - (B.y - A.y)*(P.x - A.x)
return ans
def BruteForceCH(size,data,data_o):
L=[]
R=[]
flag = [0 for x in range(size)]
for i in range(size-3):
if flag[i]==1:
continue
for j in range(i+1,size-2):
if flag[j]==1:
continue
for k in range(j+1,size-1):
if flag[k]==1:
continue
for l in range(k+1,size):
if flag[l]==1:
continue
elif istriangle(data_o[i],data_o[j],data_o[k],data_o[l]):
flag[l]=1
continue
elif istriangle(data_o[l],data_o[j],data_o[k],data_o[i]):
flag[i]=1
continue
elif istriangle(data_o[i],data_o[l],data_o[k],data_o[j]):
flag[j]=1
continue
elif istriangle(data_o[i],data_o[j],data_o[l],data_o[k]):
flag[k]=1
for i in range(size):
if flag[i]==0:
data.append(data_o[i])
data=sorted(data,key = lambda point: (point.x,point.y))
A=data[0]
B=data[-1]
del data[0]
del data[-1]
for P in data:
if(d(A,B,P)>0):
L.append(P)
elif(d(A,B,P)<0):
R.append(P)
Lr=L.reverse()
# '''
for p in data_o:
plt.scatter(p.x, p.y, c='g', marker='.')
plt.scatter(A.x, A.y, c='r', marker='.')
plt.plot([A.x,R[0].x],[A.y,R[0].y], color='r')
for i in range(len(R)-1):
plt.scatter(R[i].x, R[i].y, c='r', marker='.')
plt.plot([R[i].x,R[i+1].x],[R[i].y,R[i+1].y], color='r')
plt.scatter(R[-1].x, R[-1].y, c='r', marker='.')
plt.plot([R[-1].x,B.x],[R[-1].y,B.y], color='r')
plt.scatter(B.x, B.y, c='r', marker='.')
plt.plot([B.x,L[0].x],[B.y,L[0].y], color='r')
for i in range(len(L)-1):
plt.scatter(L[i].x, L[i].y, c='r', marker='.')
plt.plot([L[i].x,L[i+1].x],[L[i].y,L[i+1].y], color='r')
plt.scatter(L[-1].x, L[-1].y, c='r', marker='.')
plt.plot([L[-1].x,A.x],[L[-1].y,A.y], color='r')
plt.show()
# '''
实现基于Graham-Scan的凸包求解算法
具体实现方法就是,先找到点集中纵坐标最小的点,再此基础上再找横坐标最小的点,把这个点作为基点,这里需要遍历一遍点集,需要的时间复杂度。之后再遍历一遍点集,计算每个点与基点的逆时针角度,按照逆时针角度对点集进行排序,这里需要的时间开销。之后依次按照逆时针方向计算是否为凸包。
from Point import Point
import random
import matplotlib.pyplot as plt
import math
def generate_data(size,data):
for i in range(size):
#x=random.randint(0,100)
#y=random.randint(0,100)
x=random.uniform(0,100)
y=random.uniform(0,100)
p=Point(x,y)
data.append(p)
return data
def judge(a,b,c):
ans=(c.x - a.x)*(b.y - a.y) - (c.y - a.y)*(b.x - a.x)
if ans>=0:
return True
else:
return False
def GrahamScanCH(size,data):
p0=Point(101,101)
for p in data:
if p.y<p0.y:
p0=p
elif p.y==p0.y and p.x<p0.x:
p0=p
data.remove(p0)
for p in data:
if p.x==p0.x:
p.angle=math.pi/2
elif p.x>p0.x:
p.angle=math.atan((p.y-p0.y)/(p.x-p0.x))
else:
p.angle=math.atan((p0.x-p.x)/(p.y-p0.y))+math.pi/2
data=sorted(data,key = lambda point: (point.angle))
stack=[]
stack.append(p0)
stack.append(data[0])
stack.append(data[1])
for i in range(2,len(data)):
while judge(stack[-2],stack[-1],data[i]):
stack.pop(-1)
stack.append(data[i])
#'''
plt.scatter(p0.x,p0.y,c='g',marker='.')
for p in data:
plt.scatter(p.x, p.y, c='g', marker='.')
for i in range(len(stack)-1):
plt.scatter(stack[i].x, stack[i].y, c='r', marker='.')
plt.plot([stack[i].x,stack[i+1].x],[stack[i].y,stack[i+1].y], color='r')
plt.scatter(stack[-1].x, stack[-1].y, c='r', marker='.')
plt.plot([stack[-1].x,p0.x],[stack[-1].y,p0.y], color='r')
plt.show()
#'''
实现基于分治思想的凸包求解算法
分治算法主要是解决如何划分和合并的问题,划分采用方法是选择点集中横坐标的中位数,小于中位数的点集和大于中位数的点集分别进行子问题的计算。划分至点集小于等于三个点。合并的过程是基于Graham-Scan算法。
from Point import Point
import random
import matplotlib.pyplot as plt
import math
def generate_data(size,data):
for i in range(size):
#x=random.randint(0,10)
#y=random.randint(0,10)
x=random.uniform(0,100)
y=random.uniform(0,100)
p=Point(x,y)
data.append(p)
return data
def judge(a,b,c):
ans=(c.x - a.x)*(b.y - a.y) - (c.y - a.y)*(b.x - a.x)
if ans>=0:
return True
else:
return False
def divide(data):
maxn=-1
minn=101
data1=[]
data2=[]
for p in data:
if p.x<minn:
minn=p.x
if p.x>maxn:
maxn=p.x
minddle=(maxn+minn)/2
for p in data:
if p.x<=minddle:
data1.append(p)
else:
data2.append(p)
return data1,data2
def conquer(data1,data2):
if len(data1)==0:
return data2
if len(data2)==0:
return data1
#求纵坐标最小的点
if data1[0].y<=data2[0].y:
p0=data1[0]
data1.remove(p0)
flag=1
else:
p0=data2[0]
data2.remove(p0)
flag=0
#计算每一个点相对于p0的极角
p0.angle=0
for p in data1:
if p.x==p0.x:
p.angle=math.pi/2
elif p.x>p0.x:
p.angle=math.atan((p.y-p0.y)/(p.x-p0.x))
else:
p.angle=math.atan((p0.x-p.x)/(p.y-p0.y))+math.pi/2
for p in data2:
if p.x==p0.x:
p.angle=math.pi/2
elif p.x>p0.x:
p.angle=math.atan((p.y-p0.y)/(p.x-p0.x))
else:
p.angle=math.atan((p0.x-p.x)/(p.y-p0.y))+math.pi/2
#利用data1和data2逆时针排序的特点,在线性时间内将所有点按极角大小排好序
min1=10
max1=-1
min2=10
max2=-1
if flag==0:
minindex=-1
maxindex=-1
for i in range(len(data1)):
if(data1[i].angle>max1):
max1=data1[i].angle
maxindex=i
if(data1[i].angle<min1):
min1=data1[i].angle
minindex=i
if minindex<=maxindex:
data3=data1[minindex:maxindex+1]
data4=[]
if minindex!=0:
data4=data4+data1[minindex-1::-1]
if maxindex!=len(data1)-1:
data4=data4+data1[-1:maxindex:-1]
else:
data3=data1[minindex:maxindex:-1]
data4=[]
data4=data4+data1[minindex+1:]
data4=data4+data1[0:maxindex+1]
data5=[]
i=0
j=0
while i<len(data3) and j<len(data4):
if data3[i].angle<=data4[j].angle:
data5.append(data3[i])
i=i+1
else:
data5.append(data4[j])
j=j+1
while i<len(data3):
data5.append(data3[i])
i=i+1
while j<len(data4):
data5.append(data4[j])
j=j+1
data6=[]
i=0
j=0
while i<len(data2) and j<len(data5):
if data2[i].angle<=data5[j].angle:
data6.append(data2[i])
i=i+1
else:
data6.append(data5[j])
j=j+1
while i<len(data2):
data6.append(data2[i])
i=i+1
while j<len(data5):
data6.append(data5[j])
j=j+1
else:
maxindex=-1
minindex=-1
for i in range(len(data2)):
if(data2[i].angle>max2):
max2=data2[i].angle
maxindex=i
if(data2[i].angle<min2):
min2=data2[i].angle
minindex=i
if minindex<=maxindex:
data3=data2[minindex:maxindex+1]
data4=[]
if minindex!=0:
data4=data4+data2[minindex-1::-1]
if maxindex!=len(data2)-1:
data4=data4+data2[-1:maxindex:-1]
else:
data3=data2[minindex:maxindex:-1]
data4=[]
data4=data4+data2[minindex+1:]
data4=data4+data2[0:maxindex+1]
data5=[]
i=0
j=0
while i<len(data3) and j<len(data4):
if data3[i].angle<=data4[j].angle:
data5.append(data3[i])
i=i+1
else:
data5.append(data4[j])
j=j+1
while i<len(data3):
data5.append(data3[i])
i=i+1
while j<len(data4):
data5.append(data4[j])
j=j+1
data6=[]
i=0
j=0
while i<len(data1) and j<len(data5):
if data1[i].angle<=data5[j].angle:
data6.append(data1[i])
i=i+1
else:
data6.append(data5[j])
j=j+1
while i<len(data1):
data6.append(data1[i])
i=i+1
while j<len(data5):
data6.append(data5[j])
j=j+1
#洗牌,生成新的凸包
if len(data6)<=1:
return [p0]+data6
stack=[]
stack.append(p0)
stack.append(data6[0])
stack.append(data6[1])
if len(data6)==2:
return stack
for i in range(2,len(data6)):
while judge(stack[-2],stack[-1],data6[i]):
stack.pop(-1)
stack.append(data6[i])
return stack
def divide_and_conquer(data):
if len(data)<=1:
return data
if len(data)==2:
return sorted(data,key = lambda point: (point.y,point.x))
elif len(data)==3:
p0=Point(101,101)
for p in data:
if p.y<p0.y:
p0=p
elif p.y==p0.y and p.x<p0.x:
p0=p
data.remove(p0)
for p in data:
if p.x==p0.x:
p.angle=math.pi/2
elif p.x>p0.x:
p.angle=math.atan((p.y-p0.y)/(p.x-p0.x))
else:
p.angle=math.atan((p0.x-p.x)/(p.y-p0.y))+math.pi/2
res=[]
res.append(p0)
if data[0].angle<=data[1].angle:
res.append(data[0])
res.append(data[1])
else:
res.append(data[1])
res.append(data[0])
return res
data1,data2=divide(data)
data1=divide_and_conquer(data1)
data2=divide_and_conquer(data2)
data=conquer(data1,data2)
return data
def DivideCH(size,data):
#plt.show()
stack=divide_and_conquer(data)
#'''
for p in data:
plt.scatter(p.x, p.y, c='g', marker='.')
for i in range(len(stack)-1):
plt.scatter(stack[i].x, stack[i].y, c='r', marker='.')
plt.plot([stack[i].x,stack[i+1].x],[stack[i].y,stack[i+1].y], color='r')
plt.scatter(stack[-1].x, stack[-1].y, c='r', marker='.')
plt.plot([stack[-1].x,stack[0].x],[stack[-1].y,stack[0].y], color='r')
plt.show()
#'''
算法实现效果: