ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。企业如何通过各种技术手段,并把数据转换为信息、知识,已经成了提高其核心竞争力的主要瓶颈。而ETL则是主要的一个技术手段。
实现ETL,首先要实现ETL转换的过程。体现为以下几个方面:
- 空值处理:可捕获字段空值,进行加载或替换为其他含义数据,并可根据字段空值实现分流加载到不同目标库。
- 规范化数据格式:可实现字段格式约束定义,对于数据源中时间、数值、字符等数据,可自定义加载格式。
- 拆分数据:依据业务需求对字段可进行分解。例,主叫号 861082585313-8148,可进行区域码和电话号码分解。
- 验证数据正确性:可利用Lookup及拆分功能进行数据验证。例如,主叫号861082585313-8148,进行区域码和电话号码分解后,可利用Lookup返回主叫网关或交换机记载的主叫地区,进行数据验证。
- 数据替换:对于因业务因素,可实现无效数据、缺失数据的替换。
- Lookup:查获丢失数据 Lookup实现子查询,并返回用其他手段获取的缺失字段,保证字段完整性。
- 建立ETL过程的主外键约束:对无依赖性的非法数据,可替换或导出到错误数据文件中,保证主键唯一记录的加载。
注意事项:
- 如果条件允许,可利用数据中转区对运营数据进行预处理,保证集成与加载的高效性;
- 如果ETL的过程是主动“拉取”,而不是从内部“推送”,其可控性将大为增强;
- ETL之前应制定流程化的配置管理和标准协议;
- 关键数据标准至关重要。ETL面临的最大挑战是当接收数据时其各源数据的异构性和低质量。以电信为例,A系统按照统计代码管理数据,B系统按照账目数字管理,C系统按照语音ID管理。当ETL需要对这三个系统进行集成以获得对客户的全面视角时,这一过程需要复杂的匹配规则、名称/地址正常化与标准化。而ETL在处理过程中会定义一个关键数据标准,并在此基础上,制定相应的数据接口标准。
- 将数据加载到个体数据集时。在没有一个集中化的数据库情况下,拥有数据模板是非常重要的。它们是标准化的接口,每一个个体或者部门数据集市都能够填充。确保你的ETL工具有这样的功能,能够扩展到一个数据仓库平台,将信息从一个数据集市流动到下一个。
参考:
1、百度百科-ETL