import numpy as np
import mxnet as mx
import logging
logging.getLogger().setLevel(logging.DEBUG)  # logging to stdout

mxnet基本数据结构

ndarray

ndarray是mxnet中最基本的数据结构,ndarray和mxnet的关系与tensor和pytorch的关系类似。该数据结构可以看成numpy的一种变体,基本上numpy的操作ndarray都可以实现。与ndarray相关的部分是mxnet.nd.,关于ndarray操作的API可查看官方API文档

ndarray操作

a = mx.nd.random.normal(shape=(4,3))
b = mx.nd.ones((4,3))
print(a)
print(b)
print(a + b)
[[ 0.23107234  0.30030754 -0.32433936]
 [ 1.04932904  0.7368623  -0.0097888 ]
 [ 0.46656415  1.72023427  0.87809837]
 [-1.07333779 -0.86925656 -0.26717702]]
<NDArray 4x3 @cpu(0)>

[[ 1.  1.  1.]
 [ 1.  1.  1.]
 [ 1.  1.  1.]
 [ 1.  1.  1.]]
<NDArray 4x3 @cpu(0)>

[[ 1.23107231  1.30030751  0.67566061]
 [ 2.04932904  1.7368623   0.99021119]
 [ 1.46656418  2.72023439  1.87809837]
 [-0.07333779  0.13074344  0.73282301]]
<NDArray 4x3 @cpu(0)>

ndarray与numpy相互转换

  • mxnet.nd.array()传入一个numpy矩阵可以将其转换为ndarray
  • 使用ndarray.asnumpy()方法将ndarray转为numpy矩阵
a = np.random.randn(2,3)
print(a,type(a))
b = mx.nd.array(a)
print(b,type(b))
b = b.asnumpy()
print(b,type(b))
[[ 0.85512384 -0.58311797 -1.41627038]
 [-0.56862628  1.15431958  0.13168715]] <class 'numpy.ndarray'>

[[ 0.85512382 -0.58311796 -1.41627038]
 [-0.56862628  1.15431952  0.13168715]]
<NDArray 2x3 @cpu(0)> <class 'mxnet.ndarray.ndarray.NDArray'>
[[ 0.85512382 -0.58311796 -1.41627038]
 [-0.56862628  1.15431952  0.13168715]] <class 'numpy.ndarray'>

symbol

symbol是另一个重要的概念,可以理解为符号,就像我们平时使用的代数符号x,y,z一样。一个简单的类比,一个函数$f(x) = x^{2}$,符号x就是symbol,而具体x的值就是ndarray,关于symbol的是mxnet.sym.,具体可参照官方API文档

基本操作

  • 使用mxnet.sym.Variable()传入名称可建立一个symbol
  • 使用mxnet.viz.plot_network(symbol=)传入symbol可以绘制运算图
a = mx.sym.Variable('a')
b = mx.sym.Variable('b')
c = mx.sym.add_n(a,b,name="c")
mx.viz.plot_network(symbol=c)





tensorflow pytorch yolo区别_封装


output_6_0.png


带入ndarray

使用mxnet.sym.bind()方法可以获得一个带入操作数的对象,再使用forward()方法可运算出数值

x = c.bind(ctx=mx.cpu(),args={"a": mx.nd.ones(5),"b":mx.nd.ones(5)})
result = x.forward()
print(result)
[
[ 2.  2.  2.  2.  2.]
<NDArray 5 @cpu(0)>]

mxnet的数据载入

深度学习中数据的载入方式非常重要,mxnet提供了mxnet.io.的一系列dataiter用于处理数据载入,详细可参照官方API文档。同时,动态图接口gluon也提供了mxnet.gluon.data.系列的dataiter用于数据载入,详细可参照官方API文档

mxnet.io数据载入

mxnet.io的数据载入核心是mxnet.io.DataIter类及其派生类,例如ndarray的iter:NDArrayIter

  • 参数data=:传入一个(名称-数据)的数据dict
  • 参数label=:传入一个(名称-标签)的标签dict
  • 参数batch_size=:传入batch大小
dataset = mx.io.NDArrayIter(data={'data':mx.nd.ones((10,5))},label={'label':mx.nd.arange(10)},batch_size=5)
for i in dataset:
    print(i)
    print(i.data,type(i.data[0]))
    print(i.label,type(i.label[0]))
DataBatch: data shapes: [(5, 5)] label shapes: [(5,)]
[
[[ 1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.]]
<NDArray 5x5 @cpu(0)>] <class 'mxnet.ndarray.ndarray.NDArray'>
[
[ 0.  1.  2.  3.  4.]
<NDArray 5 @cpu(0)>] <class 'mxnet.ndarray.ndarray.NDArray'>
DataBatch: data shapes: [(5, 5)] label shapes: [(5,)]
[
[[ 1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.]]
<NDArray 5x5 @cpu(0)>] <class 'mxnet.ndarray.ndarray.NDArray'>
[
[ 5.  6.  7.  8.  9.]
<NDArray 5 @cpu(0)>] <class 'mxnet.ndarray.ndarray.NDArray'>

gluon.data数据载入

gluon的数据API几乎与pytorch相同,均是Dataset+DataLoader的方式:

  • Dataset:存储数据,使用时需要继承该基类并重载__len__(self)__getitem__(self,idx)方法
  • DataLoader:将Dataset变成能产生batch的可迭代对象
dataset = mx.gluon.data.ArrayDataset(mx.nd.ones((10,5)),mx.nd.arange(10))
loader = mx.gluon.data.DataLoader(dataset,batch_size=5)
for i,data in enumerate(loader):
    print(i)
    print(data)
0
[
[[ 1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.]]
<NDArray 5x5 @cpu(0)>, 
[ 0.  1.  2.  3.  4.]
<NDArray 5 @cpu(0)>]
1
[
[[ 1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.]]
<NDArray 5x5 @cpu(0)>, 
[ 5.  6.  7.  8.  9.]
<NDArray 5 @cpu(0)>]
class TestSet(mx.gluon.data.Dataset):
    def __init__(self):
        self.x = mx.nd.zeros((10,5))
        self.y = mx.nd.arange(10)
        
    def __getitem__(self,i):
        return self.x[i],self.y[i]
    
    def __len__(self):
        return 10

for i,data in enumerate(mx.gluon.data.DataLoader(TestSet(),batch_size=5)):
    print(data)
[
[[ 0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.]]
<NDArray 5x5 @cpu(0)>, 
[[ 0.]
 [ 1.]
 [ 2.]
 [ 3.]
 [ 4.]]
<NDArray 5x1 @cpu(0)>]
[
[[ 0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.]]
<NDArray 5x5 @cpu(0)>, 
[[ 5.]
 [ 6.]
 [ 7.]
 [ 8.]
 [ 9.]]
<NDArray 5x1 @cpu(0)>]

网络搭建

mxnet网络搭建

mxnet网络搭建类似于TensorFlow,使用symbol搭建出网络,再用一个module封装

data = mx.sym.Variable('data')
# layer1
conv1 = mx.sym.Convolution(data=data, kernel=(5,5), num_filter=32,name="conv1")
relu1 = mx.sym.Activation(data=conv1,act_type="relu",name="relu1")
pool1 = mx.sym.Pooling(data=relu1,pool_type="max",kernel=(2,2),stride=(2,2),name="pool1")

# layer2
conv2 = mx.sym.Convolution(data=pool1, kernel=(3,3), num_filter=64,name="conv2")
relu2 = mx.sym.Activation(data=conv2,act_type="relu",name="relu2")
pool2 = mx.sym.Pooling(data=relu2,pool_type="max",kernel=(2,2),stride=(2,2),name="pool2")

# layer3
fc1 = mx.symbol.FullyConnected(data=mx.sym.flatten(pool2), num_hidden=256,name="fc1")
relu3 = mx.sym.Activation(data=fc1, act_type="relu",name="relu3")

# layer4
fc2 = mx.symbol.FullyConnected(data=relu3, num_hidden=10,name="fc2")
out = mx.sym.SoftmaxOutput(data=fc2, label=mx.sym.Variable("label"),name='softmax')

mxnet_model = mx.mod.Module(symbol=out,label_names=["label"],context=mx.gpu())
mx.viz.plot_network(symbol=out)


tensorflow pytorch yolo区别_API_02


网络结构


Gluon模型搭建

Gluon模型搭建与pytorch类似,通过继承一个mx.gluon.Block或使用mx.gluon.nn.Sequential()来实现

一般搭建方法

class MLP(mx.gluon.Block):
    def __init__(self, **kwargs):
        super(MLP, self).__init__(**kwargs)
        with self.name_scope():
            self.dense0 = mx.gluon.nn.Dense(256)
            self.dense1 = mx.gluon.nn.Dense(64)
            self.dense2 = mx.gluon.nn.Dense(10)

    def forward(self, x):
        x = mx.nd.relu(self.dense0(x))
        x = mx.nd.relu(self.dense1(x))
        x = self.dense2(x)
        return x
gluon_model = MLP()
print(gluon_model)
# mx.viz.plot_network(symbol=gluon_model)
MLP(
  (dense0): Dense(None -> 256, linear)
  (dense2): Dense(None -> 10, linear)
  (dense1): Dense(None -> 64, linear)
)

快速搭建方法

gluon_model2 = mx.gluon.nn.Sequential()
with gluon_model2.name_scope():
    gluon_model2.add(mx.gluon.nn.Dense(256,activation="relu"))
    gluon_model2.add(mx.gluon.nn.Dense(64,activation="relu"))
    gluon_model2.add(mx.gluon.nn.Dense(10,activation="relu"))
print(gluon_model2)
Sequential(
  (0): Dense(None -> 256, Activation(relu))
  (1): Dense(None -> 64, Activation(relu))
  (2): Dense(None -> 10, Activation(relu))
)

模型训练

mxnet模型训练

mxnet提供了两套不同层次上的训练封装,一般使用最方便的顶层封装fit()即可

mnist = mx.test_utils.get_mnist()
train_iter = mx.io.NDArrayIter(mnist['train_data'], mnist['train_label'], batch_size=100, data_name='data',label_name='label',shuffle=True)
val_iter = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], batch_size=100,data_name='data',label_name='label')
INFO:root:train-labels-idx1-ubyte.gz exists, skipping download
INFO:root:train-images-idx3-ubyte.gz exists, skipping download
INFO:root:t10k-labels-idx1-ubyte.gz exists, skipping download
INFO:root:t10k-images-idx3-ubyte.gz exists, skipping download
mxnet_model.fit(train_iter,  # train data
              eval_data=val_iter,  # validation data
              optimizer='adam',  # use SGD to train
              optimizer_params={'learning_rate':0.01},  # use fixed learning rate
              eval_metric='acc',  # report accuracy during training
              batch_end_callback = mx.callback.Speedometer(100, 200), # output progress for each 100 data batches
              num_epoch=3)  # train for at most 3 dataset passes
INFO:root:Epoch[0] Batch [200]  Speed: 5239.83 samples/sec  accuracy=0.890348
INFO:root:Epoch[0] Batch [400]  Speed: 5135.49 samples/sec  accuracy=0.971450
INFO:root:Epoch[0] Train-accuracy=0.977236
INFO:root:Epoch[0] Time cost=11.520
INFO:root:Epoch[0] Validation-accuracy=0.980300
INFO:root:Epoch[1] Batch [200]  Speed: 5336.36 samples/sec  accuracy=0.979453
INFO:root:Epoch[1] Batch [400]  Speed: 5312.22 samples/sec  accuracy=0.982550
INFO:root:Epoch[1] Train-accuracy=0.984724
INFO:root:Epoch[1] Time cost=11.704
INFO:root:Epoch[1] Validation-accuracy=0.980500
INFO:root:Epoch[2] Batch [200]  Speed: 5522.89 samples/sec  accuracy=0.982388
INFO:root:Epoch[2] Batch [400]  Speed: 5562.08 samples/sec  accuracy=0.984550
INFO:root:Epoch[2] Train-accuracy=0.985075
INFO:root:Epoch[2] Time cost=10.860
INFO:root:Epoch[2] Validation-accuracy=0.978000

gluon模型训练

gluon的模型训练包括:

  1. 初始化模型参数
  2. 定义代价函数和优化器
  3. 计算前向传播
  4. 反向传播计算梯度
  5. 调用优化器优化模型
def transform(data, label):
    return data.astype(np.float32)/255, label.astype(np.float32)
gluon_train_data = mx.gluon.data.DataLoader(mx.gluon.data.vision.MNIST(train=True, transform=transform),
                                      100, shuffle=True)
gluon_test_data = mx.gluon.data.DataLoader(mx.gluon.data.vision.MNIST(train=False, transform=transform),
                                     100, shuffle=False)
gluon_model.collect_params().initialize(mx.init.Normal(sigma=.1), ctx=mx.gpu())
softmax_cross_entropy = mx.gluon.loss.SoftmaxCrossEntropyLoss()
trainer = mx.gluon.Trainer(gluon_model.collect_params(), 'sgd', {'learning_rate': .1})
for _ in range(2):
    for i,(data,label) in enumerate(gluon_train_data):
        data = data.as_in_context(mx.gpu()).reshape((-1, 784))
        label = label.as_in_context(mx.gpu())
        with mx.autograd.record():
            outputs = gluon_model(data)
            loss = softmax_cross_entropy(outputs,label)
        loss.backward()
        trainer.step(data.shape[0])
        if i % 100 == 1:
            print(loss.mean().asnumpy()[0])
2.3196
0.280345
0.268811
0.419094
0.260873
0.252575
0.162117
0.247361
0.169366
0.184899
0.0986493
0.251358

准确率计算

mxnet模型准确率计算

mxnet的模型提供score()方法用于计算指标,用法与sklearn类似,除了用该API,也可以使用ndarray搭建评估函数

acc = mx.metric.Accuracy()
mxnet_model.score(val_iter,acc)
print(acc)
EvalMetric: {'accuracy': 0.97799999999999998}

gluon模型准确率计算

gluon官方教程中没有使用提供好的准确率计算方法,需要使用mxnet函数的metric.Accuracy()搭建

def evaluate_accuracy():
    acc = mx.metric.Accuracy()
    for i, (data, label) in enumerate(gluon_test_data):
        data = data.as_in_context(mx.gpu()).reshape((-1, 784))
        label = label.as_in_context(mx.gpu())
        output = gluon_model(data)
        predictions = mx.nd.argmax(output, axis=1)
        acc.update(preds=predictions, labels=label)
    return acc.get()[1]
evaluate_accuracy()
0.95079999999999998

模型保存与载入

mxnet

mxnet保存模型

  • mxnet在fit中使用mx.callback.module_checkpoint()作为fit参数epoch_end_callback可以在训练中保存模型
  • 训练完成后可以使用module.save_checkpoint()保存模型
mxnet_model.save_checkpoint("mxnet_",3)
INFO:root:Saved checkpoint to "mxnet_-0003.params"

mxnet载入模型

使用mx.model.load_checkpoint()mx.model.set_params载入模型

# mxnet_model2 = mx.mod.Module(symbol=out,label_names=["label"],context=mx.gpu())
sym, arg_params, aux_params = mx.model.load_checkpoint("mxnet_", 3)
mxnet_model2 = mx.mod.Module(symbol=sym,label_names=["label"],context=mx.gpu())
mxnet_model2.bind(data_shapes=train_iter.provide_data, label_shapes=train_iter.provide_label)
mxnet_model2.set_params(arg_params,aux_params)
mxnet_model2.score(val_iter,acc)
print(acc)
EvalMetric: {'accuracy': 0.97799999999999998}

gluon

gluon保存模型

使用gluon.Block.save_params()可以保存模型

gluon_model.save_params("gluon_model")

gluon载入模型

使用gluon.Block.load_params()可以载入模型参数

gluon_model2.load_params("gluon_model",ctx=mx.gpu())
def evaluate_accuracy():
    acc = mx.metric.Accuracy()
    for i, (data, label) in enumerate(gluon_test_data):
        data = data.as_in_context(mx.gpu()).reshape((-1, 784))
        label = label.as_in_context(mx.gpu())
        output = gluon_model2(data)
        predictions = mx.nd.argmax(output, axis=1)
        acc.update(preds=predictions, labels=label)
    return acc.get()[1]
evaluate_accuracy()
0.95079999999999998