JDK8开始定义了很多新的操作List Set Map的接口,方便集合的运算。

1. Stream 接口

1.1 原理

java.util.Stream 表示能应用在一组元素上,一次执行的操作序列。//及其难懂

Stream 运算分为中间运算和最终运算,最终运算返回方法的计算结果值;而中间运算返回Stream,可以进行多次stream运算。

Stream 基于一组元素计算,比如 java.util.Collection的子类,List或者Set, Map不支持。

public interface Collection<E> extends Iterable<E> {
    /**
     * Returns a sequential {@code Stream} with this collection as its source.
     *
     * <p>This method should be overridden when the {@link #spliterator()}
     * method cannot return a spliterator that is {@code IMMUTABLE},
     * {@code CONCURRENT}, or <em>late-binding</em>. (See {@link #spliterator()}
     * for details.)
     *
     * @implSpec
     * The default implementation creates a sequential {@code Stream} from the
     * collection's {@code Spliterator}.
     *
     * @return a sequential {@code Stream} over the elements in this collection
     * @since 1.8
     */
    default Stream<E> stream() {
        return StreamSupport.stream(spliterator(), false);
    }

    /**
     * Returns a possibly parallel {@code Stream} with this collection as its
     * source.  It is allowable for this method to return a sequential stream.
     *
     * <p>This method should be overridden when the {@link #spliterator()}
     * method cannot return a spliterator that is {@code IMMUTABLE},
     * {@code CONCURRENT}, or <em>late-binding</em>. (See {@link #spliterator()}
     * for details.)
     *
     * @implSpec
     * The default implementation creates a parallel {@code Stream} from the
     * collection's {@code Spliterator}.
     *
     * @return a possibly parallel {@code Stream} over the elements in this
     * collection
     * @since 1.8
     */
    default Stream<E> parallelStream() {
        return StreamSupport.stream(spliterator(), true);
    }

    @Override
    default Spliterator<E> spliterator() {
        return Spliterators.spliterator(this, 0);
    }

 Collection的源码可以看出支持stream运算,流式接口的核心原理是fork/join基础,基于大数据运算的算法,拆分collection,多管路分别运算,组装结果。

stream方法支持串行化运算,parallelStream方法支持并行化运算

static class IteratorSpliterator<T> implements Spliterator<T> {
        static final int BATCH_UNIT = 1 << 10;  // batch array size increment
        static final int MAX_BATCH = 1 << 25;  // max batch array size;
        private final Collection<? extends T> collection; // null OK
        private Iterator<? extends T> it;
        private final int characteristics;
        private long est;             // size estimate
        private int batch;            // batch size for splits

        /**
         * Creates a spliterator using the given given
         * collection's {@link java.util.Collection#iterator()) for traversal,
         * and reporting its {@link java.util.Collection#size()) as its initial
         * size.
         *
         * @param c the collection
         * @param characteristics properties of this spliterator's
         *        source or elements.
         */
        public IteratorSpliterator(Collection<? extends T> collection, int characteristics) {
            this.collection = collection;
            this.it = null;
            this.characteristics = (characteristics & Spliterator.CONCURRENT) == 0
                                   ? characteristics | Spliterator.SIZED | Spliterator.SUBSIZED
                                   : characteristics;
        }

Spliterator的本质:分离器,按照某种字节大小分离集合

如在Windows下

Spliterator.CONCURRENT就是4096,刚好是4K,磁盘的最小单位。

这里我理解也比较吃力,需要对磁盘硬件和硬件软件驱动模式有一定的了解才行。

下面看 StreamSupport.stream的本质

/**
     * Creates a new sequential or parallel {@code Stream} from a
     * {@code Spliterator}.
     *
     * <p>The spliterator is only traversed, split, or queried for estimated
     * size after the terminal operation of the stream pipeline commences.
     *
     * <p>It is strongly recommended the spliterator report a characteristic of
     * {@code IMMUTABLE} or {@code CONCURRENT}, or be
     * <a href="../Spliterator.html#binding">late-binding</a>.  Otherwise,
     * {@link #stream(java.util.function.Supplier, int, boolean)} should be used
     * to reduce the scope of potential interference with the source.  See
     * <a href="package-summary.html#NonInterference">Non-Interference</a> for
     * more details.
     *
     * @param <T> the type of stream elements
     * @param spliterator a {@code Spliterator} describing the stream elements
     * @param parallel if {@code true} then the returned stream is a parallel
     *        stream; if {@code false} the returned stream is a sequential
     *        stream.
     * @return a new sequential or parallel {@code Stream}
     */
    public static <T> Stream<T> stream(Spliterator<T> spliterator, boolean parallel) {
        Objects.requireNonNull(spliterator);
        return new ReferencePipeline.Head<>(spliterator,
                                            StreamOpFlag.fromCharacteristics(spliterator),
                                            parallel);
    }
/**
     * Constructor for the head of a stream pipeline.
     *
     * @param source {@code Spliterator} describing the stream source
     * @param sourceFlags the source flags for the stream source, described in
     * {@link StreamOpFlag}
     * @param parallel {@code true} if the pipeline is parallel
     */
    AbstractPipeline(Spliterator<?> source,
                     int sourceFlags, boolean parallel) {
        this.previousStage = null;
        this.sourceSpliterator = source;
        this.sourceStage = this;
        this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK;
        // The following is an optimization of:
        // StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE);
        this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE;
        this.depth = 0;
        this.parallel = parallel;
    }

 应该是管道存储。Pipeline,也就是说stream的本质就是Pipeline。根据spliterator的方式切分集合,存储为Pipeline,便与运算。

中间态运算都是构造函数实现的,应该在别的地方有实现逻辑,源码直接追踪就是构造函数

最终态运算结果是调用方法可以直接看到核心原理。

AbstractPipeline类定义了实际的处理逻辑,如evaluate方法

/**
     * Evaluate the pipeline with a terminal operation to produce a result.
     *
     * @param <R> the type of result
     * @param terminalOp the terminal operation to be applied to the pipeline.
     * @return the result
     */
    final <R> R evaluate(TerminalOp<E_OUT, R> terminalOp) {
        assert getOutputShape() == terminalOp.inputShape();
        if (linkedOrConsumed)
            throw new IllegalStateException(MSG_STREAM_LINKED);
        linkedOrConsumed = true;

        return isParallel()
               ? terminalOp.evaluateParallel(this, sourceSpliterator(terminalOp.getOpFlags()))
               : terminalOp.evaluateSequential(this, sourceSpliterator(terminalOp.getOpFlags()));
    }

有一下实现方式

java 流式服务 java流式布局特点_lua

 本质是

@Override
    final <P_IN> void copyInto(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) {
        Objects.requireNonNull(wrappedSink);

        if (!StreamOpFlag.SHORT_CIRCUIT.isKnown(getStreamAndOpFlags())) {
            wrappedSink.begin(spliterator.getExactSizeIfKnown());
            spliterator.forEachRemaining(wrappedSink);
            wrappedSink.end();
        }
        else {
            copyIntoWithCancel(wrappedSink, spliterator);
        }
    }

    @Override
    @SuppressWarnings("unchecked")
    final <P_IN> void copyIntoWithCancel(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) {
        @SuppressWarnings({"rawtypes","unchecked"})
        AbstractPipeline p = AbstractPipeline.this;
        while (p.depth > 0) {
            p = p.previousStage;
        }
        wrappedSink.begin(spliterator.getExactSizeIfKnown());
        p.forEachWithCancel(spliterator, wrappedSink);
        wrappedSink.end();
    }

 进一步查看本质

default void forEachRemaining(Consumer<? super T> action) {
        do { } while (tryAdvance(action));
    }

java 流式服务 java流式布局特点_lua_02

 比如选择引用类型。处理源码如下:

@Override
    final void forEachWithCancel(Spliterator<P_OUT> spliterator, Sink<P_OUT> sink) {
        do { } while (!sink.cancellationRequested() && spliterator.tryAdvance(sink));
    }

本质是函数式接口参数的循环。 

 

Stream运算可以串行、并行执行。

Stream的操作不会改变list原本的结构,只会在Pipeline内存存储。

1.2 forEach

使用evaluate方法,上章有介绍原理。

void forEach(Consumer<? super T> action);

@Override
public void forEach(Consumer<? super P_OUT> action) {
   evaluate(ForEachOps.makeRef(action, false));
}

@FunctionalInterface
public interface Consumer<T> {

/**
  * Performs this operation on the given argument.
  *
  * @param t the input argument
  */
void accept(T t);

 forEach使用函数式接口参数。forEach是一个最终操作,输出操作后没有返回值,不能执行其他操作。

List<String> list = new ArrayList<>();
list.add("d-2");
list.add("a-2");
list.add("b-1");
list.add("a-1");
list.add("b-3");
list.add("rrr");
list.add("kkk");
list.add("d-1");

list.stream().forEach(System.out::println);
list.stream().forEach((s)->System.out.println(s));

1.3 Filter 

/**
     * Returns a stream consisting of the elements of this stream that match
     * the given predicate.
     *
     * <p>This is an <a href="package-summary.html#StreamOps">intermediate
     * operation</a>.
     *
     * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
     *                  <a href="package-summary.html#Statelessness">stateless</a>
     *                  predicate to apply to each element to determine if it
     *                  should be included
     * @return the new stream
     */
    Stream<T> filter(Predicate<? super T> predicate);

中间态运算,运算结果为Stream。

abstract class ReferencePipeline<P_IN, P_OUT>
        extends AbstractPipeline<P_IN, P_OUT, Stream<P_OUT>>
        implements Stream<P_OUT>  {

    @Override
    public final Stream<P_OUT> filter(Predicate<? super P_OUT> predicate) {
        Objects.requireNonNull(predicate);
        return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE,
                                     StreamOpFlag.NOT_SIZED) {
            @Override
            Sink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) {
                return new Sink.ChainedReference<P_OUT, P_OUT>(sink) {
                    @Override
                    public void begin(long size) {
                        downstream.begin(-1);
                    }

                    @Override
                    public void accept(P_OUT u) {
                        if (predicate.test(u))
                            downstream.accept(u);
                    }
                };
            }
        };
    }

看起来像流运算,需要仔细研究一下。

示例

List<String> list = new ArrayList<>();
        list.add("d-2");
        list.add("a-2");
        list.add("b-1");
        list.add("a-1");
        list.add("b-3");
        list.add("rrr");
        list.add("kkk");
        list.add("d-1");

        list.stream().filter((s) -> s.startsWith("a"))
        .forEach(System.out::println);

        list.stream().forEach(System.out::println);

Stream的操作filter(包括其他操作)不会改变list原本的结构,只会在Pipeline内存存储。

1.4 Sort 

/**
     * Returns a stream consisting of the elements of this stream, sorted
     * according to natural order.  If the elements of this stream are not
     * {@code Comparable}, a {@code java.lang.ClassCastException} may be thrown
     * when the terminal operation is executed.
     *
     * <p>For ordered streams, the sort is stable.  For unordered streams, no
     * stability guarantees are made.
     *
     * <p>This is a <a href="package-summary.html#StreamOps">stateful
     * intermediate operation</a>.
     *
     * @return the new stream
     */
    Stream<T> sorted();

    /**
     * Returns a stream consisting of the elements of this stream, sorted
     * according to the provided {@code Comparator}.
     *
     * <p>For ordered streams, the sort is stable.  For unordered streams, no
     * stability guarantees are made.
     *
     * <p>This is a <a href="package-summary.html#StreamOps">stateful
     * intermediate operation</a>.
     *
     * @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,
     *                   <a href="package-summary.html#Statelessness">stateless</a>
     *                   {@code Comparator} to be used to compare stream elements
     * @return the new stream
     */
    Stream<T> sorted(Comparator<? super T> comparator);
OfRef(AbstractPipeline<?, T, ?> upstream, Comparator<? super T> comparator) {
            super(upstream, StreamShape.REFERENCE,
                  StreamOpFlag.IS_ORDERED | StreamOpFlag.NOT_SORTED);
            this.isNaturalSort = false;
            this.comparator = Objects.requireNonNull(comparator);
    }

    /**
     * Sort using natural order of {@literal <T>} which must be
     * {@code Comparable}.
     */
     OfRef(AbstractPipeline<?, T, ?> upstream) {
            super(upstream, StreamShape.REFERENCE,
                  StreamOpFlag.IS_ORDERED | StreamOpFlag.IS_SORTED);
            this.isNaturalSort = true;
            // Will throw CCE when we try to sort if T is not Comparable
            @SuppressWarnings("unchecked")
            Comparator<? super T> comp = (Comparator<? super T>) Comparator.naturalOrder();
            this.comparator = comp;
    }        

    @Override
    public final Stream<P_OUT> sorted() {
        return SortedOps.makeRef(this);
    }

    OfRef(AbstractPipeline<?, T, ?> upstream, Comparator<? super T> comparator) {
            super(upstream, StreamShape.REFERENCE,
                  StreamOpFlag.IS_ORDERED | StreamOpFlag.NOT_SORTED);
            this.isNaturalSort = false;
            this.comparator = Objects.requireNonNull(comparator);
    }

    @Override
    public final Stream<P_OUT> sorted(Comparator<? super P_OUT> comparator) {
        return SortedOps.makeRef(this, comparator);
    }

有默认比较器Comparator.naturalOrder();

List<String> list = new ArrayList<>();
        list.add("d-2");
        list.add("a-2");
        list.add("b-1");
        list.add("a-1");
        list.add("b-3");
        list.add("rrr");
        list.add("kkk");
        list.add("d-1");

        list.stream()
                .sorted()
        .forEach((s)->System.out.println(s));

1.5 map

将集合的元素替换,比如转大小写,String转int等。

<R> Stream<R> map(Function<? super T, ? extends R> mapper);

    @Override
    @SuppressWarnings("unchecked")
    public final <R> Stream<R> map(Function<? super P_OUT, ? extends R> mapper) {
        Objects.requireNonNull(mapper);
        return new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE,
                                     StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
            @Override
            Sink<P_OUT> opWrapSink(int flags, Sink<R> sink) {
                return new Sink.ChainedReference<P_OUT, R>(sink) {
                    @Override
                    public void accept(P_OUT u) {
                        downstream.accept(mapper.apply(u));
                    }
                };
            }
        };
    }

 

java 流式服务 java流式布局特点_java 流式服务_03

默认实现有3种,如上图

list.stream().map(String::trim)
        .forEach((s)->System.out.println(s));

1.6 match

java 流式服务 java流式布局特点_lua_04

match是最终操作,返回boolean值。

 源码只是,枚举类型不一样,实现逻辑一致。

@Override
    public final boolean anyMatch(Predicate<? super P_OUT> predicate) {
        return evaluate(MatchOps.makeRef(predicate, MatchOps.MatchKind.ANY));
    }

    @Override
    public final boolean allMatch(Predicate<? super P_OUT> predicate) {
        return evaluate(MatchOps.makeRef(predicate, MatchOps.MatchKind.ALL));
    }

    @Override
    public final boolean noneMatch(Predicate<? super P_OUT> predicate) {
        return evaluate(MatchOps.makeRef(predicate, MatchOps.MatchKind.NONE));
    }

示例

List<String> list = new ArrayList<>();
        list.add("d-2");
        list.add("a-2");
        list.add("b-1");
        list.add("a-1");
        list.add("b-3");
        list.add("c33");
        list.add("bgg33");
        list.add("dffff");

        boolean flag = list.stream().anyMatch((s -> s.startsWith("a")));
        System.out.println(flag);

1.7 count

@Override
    public final long count() {
        return mapToLong(e -> 1L).sum();
    }

    @Override
    public final long sum() {
        // use better algorithm to compensate for intermediate overflow?
        return reduce(0, Long::sum);
    }

    @Override
    public final long reduce(long identity, LongBinaryOperator op) {
        return evaluate(ReduceOps.makeLong(identity, op));
    }

    /**
     * Constructs a {@code TerminalOp} that implements a functional reduce on
     * {@code long} values.
     *
     * @param identity the identity for the combining function
     * @param operator the combining function
     * @return a {@code TerminalOp} implementing the reduction
     */
    public static TerminalOp<Long, Long>
    makeLong(long identity, LongBinaryOperator operator) {
        Objects.requireNonNull(operator);
        class ReducingSink
                implements AccumulatingSink<Long, Long, ReducingSink>, Sink.OfLong {
            private long state;

            @Override
            public void begin(long size) {
                state = identity;
            }

            @Override
            public void accept(long t) {
                state = operator.applyAsLong(state, t);
            }

            @Override
            public Long get() {
                return state;
            }

            @Override
            public void combine(ReducingSink other) {
                accept(other.state);
            }
        }
        return new ReduceOp<Long, Long, ReducingSink>(StreamShape.LONG_VALUE) {
            @Override
            public ReducingSink makeSink() {
                return new ReducingSink();
            }
        };
    }

源码风格跟JDK1.8之前大相径庭,偏向C语言风格。

代码上看是使用mapToLong将集合元素转成所有元素为1L的值,然后初始化0,求Long::sum静态方法求和

调用了reduce方法计算。

示例

long count = list.stream().count();
System.out.println(count);

1.8 reduce

public final Optional<P_OUT> reduce(BinaryOperator<P_OUT> accumulator) {
        return evaluate(ReduceOps.makeRef(accumulator));
    }

返回Optional结果,上面的count计算其实就是reduce的一种运用

java 流式服务 java流式布局特点_java 流式服务_05

将所有值运算,得到一个值,是最终操作的结果,可以是count,sum,avg等。函数是接口如下:

@FunctionalInterface
public interface BiFunction<T, U, R> {

    /**
     * Applies this function to the given arguments.
     *
     * @param t the first function argument
     * @param u the second function argument
     * @return the function result
     */
    R apply(T t, U u);

我们实现上面的count计算,示例如下:

List<String> list = new ArrayList<>();
        list.add("d-2");
        list.add("a-2");
        list.add("b-1");
        list.add("a-1");
        list.add("b-3");
        list.add("c33");
        list.add("bgg33");
        list.add("dffff");

        //OptionalLong result = list.stream().mapToLong(e->1L).reduce((s1, s2)->s1+s2);
        OptionalLong result = list.stream().mapToLong(e->1L).reduce(Long::sum);
        result.ifPresent(System.out::println);

这样我们自己就根据count的原理实现了count运算

1.9 IDEA DEBUG

demo

public static void main(String[] args) {
        List<Optional<Person>> list = new ArrayList<>();
        list.add(Optional.of(new Person("tom", 23)));
        list.add(Optional.empty());
        list.add(Optional.of(new Person("jim", 25)));
        list.add(Optional.empty());
        list.add(Optional.of(new Person("lily", 18)));
        list.add(Optional.of(new Person("bejta", 1000)));
        list.add(Optional.empty());
        list.add(Optional.of(new Person("an", 32)));

        list.stream().flatMap(c -> c.map(Stream::of).orElseGet(Stream::empty)).filter(t->t.getAge()<20).forEach(System.out::println);
    }

点击trace按钮

然后可以清晰的跟踪流的处理情况

java 流式服务 java流式布局特点_lua_06

点击Flat Mode

java 流式服务 java流式布局特点_Java_07

详细的展示变化,而且每步的值清晰可见

2. parallelStream并行化

Stream有串行和并行,对应Stream的两个方法stream方法和parallelStream方法。

stream方法的操作是在一个线程中依次完成,而parallelStream方法则是在多个线程上同时执行。

原理很简单,大任务的时候,多个线程同时干活肯定比单个线程快;任务少的时候多线程的开销,创建销毁等比较大,可能性能还比较低。运用要根据实际情况。

/**
     * Creates a new sequential or parallel {@code Stream} from a
     * {@code Spliterator}.
     *
     * <p>The spliterator is only traversed, split, or queried for estimated
     * size after the terminal operation of the stream pipeline commences.
     *
     * <p>It is strongly recommended the spliterator report a characteristic of
     * {@code IMMUTABLE} or {@code CONCURRENT}, or be
     * <a href="../Spliterator.html#binding">late-binding</a>.  Otherwise,
     * {@link #stream(java.util.function.Supplier, int, boolean)} should be used
     * to reduce the scope of potential interference with the source.  See
     * <a href="package-summary.html#NonInterference">Non-Interference</a> for
     * more details.
     *
     * @param <T> the type of stream elements
     * @param spliterator a {@code Spliterator} describing the stream elements
     * @param parallel if {@code true} then the returned stream is a parallel
     *        stream; if {@code false} the returned stream is a sequential
     *        stream.
     * @return a new sequential or parallel {@code Stream}
     */
    public static <T> Stream<T> stream(Spliterator<T> spliterator, boolean parallel) {
        Objects.requireNonNull(spliterator);
        return new ReferencePipeline.Head<>(spliterator,
                                            StreamOpFlag.fromCharacteristics(spliterator),
                                            parallel);
    }

@param parallel if {@code true} then the returned stream is a parallel stream; if {@code false} the returned stream is a sequential stream.

default Stream<E> parallelStream() {
        return StreamSupport.stream(spliterator(), true);
    }

这里为true,意味着多线程运算。

效率的示例,大任务量:

int max = 3000000;
        UUID uuid;
        List<String> list = new ArrayList<>(max);
        for (int i = 0; i < max; i++) {
            uuid = UUID.randomUUID();
            list.add(uuid.toString());
        }


        System.out.println("------------------------------start------------------------");
        long st = System.currentTimeMillis();
        list.stream().sorted().count();
        long et = System.currentTimeMillis();

        System.out.println("用时:\t"+(et-st)+"\tms");

        ------------------------------start------------------------
        用时:	3131	ms

System.out.println("------------------------------start------------------------");
        long st = System.currentTimeMillis();
        list.parallelStream().sorted().count();
        long et = System.currentTimeMillis();

        System.out.println("用时:\t"+(et-st)+"\tms");

        ------------------------------start------------------------
        用时:	1102	ms

此demo,parallelStream并行运算仅用了1/3的时间,另外增大计算的量,差距会更明显。(List,如果我们知道容量大小,一次性初始化比扩容效率高太多,推荐在知道容量时,初始化容量)

3. map

3.1 forEach

/**
     * Performs the given action for each entry in this map until all entries
     * have been processed or the action throws an exception.   Unless
     * otherwise specified by the implementing class, actions are performed in
     * the order of entry set iteration (if an iteration order is specified.)
     * Exceptions thrown by the action are relayed to the caller.
     *
     * @implSpec
     * The default implementation is equivalent to, for this {@code map}:
     * <pre> {@code
     * for (Map.Entry<K, V> entry : map.entrySet())
     *     action.accept(entry.getKey(), entry.getValue());
     * }</pre>
     *
     * The default implementation makes no guarantees about synchronization
     * or atomicity properties of this method. Any implementation providing
     * atomicity guarantees must override this method and document its
     * concurrency properties.
     *
     * @param action The action to be performed for each entry
     * @throws NullPointerException if the specified action is null
     * @throws ConcurrentModificationException if an entry is found to be
     * removed during iteration
     * @since 1.8
     */
    default void forEach(BiConsumer<? super K, ? super V> action) {
        Objects.requireNonNull(action);
        for (Map.Entry<K, V> entry : entrySet()) {
            K k;
            V v;
            try {
                k = entry.getKey();
                v = entry.getValue();
            } catch(IllegalStateException ise) {
                // this usually means the entry is no longer in the map.
                throw new ConcurrentModificationException(ise);
            }
            action.accept(k, v);
        }
    }

JDK 1.8自带了forEach方法,Map接口的default方法。

根据代码,使用函数式接口处理结果,使用entrySet遍历

示例

Map<Integer, String> map = new HashMap<>();
        for (int i = 1; i <= 12; i++) {
            map.putIfAbsent(i, "val" + i);
        }

        map.forEach((s1,s2)->
            System.out.println("key:"+s1+"\tvalue:"+s2)
        );

3.2 putIfAbsent

这里使用putIfAbsent源码如下:

/**
     * @since 1.8
     */
    default V putIfAbsent(K key, V value) {
        V v = get(key);
        if (v == null) {
            v = put(key, value);
        }

        return v;
    }

putIfAbsent根据value == null来设定值。

3.3 computeIfAbsent

/** @since 1.8
     */
    default V computeIfAbsent(K key,
            Function<? super K, ? extends V> mappingFunction) {
        Objects.requireNonNull(mappingFunction);
        V v;
        if ((v = get(key)) == null) {
            V newValue;
            if ((newValue = mappingFunction.apply(key)) != null) {
                put(key, newValue);
                return newValue;
            }
        }

key的value值==null,新的value值不为null,设置key新的value值。

还有一种通过旧value计算新value,如下:

/** @since 1.8
     */
    default V computeIfPresent(K key,
            BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        Objects.requireNonNull(remappingFunction);
        V oldValue;
        if ((oldValue = get(key)) != null) {
            //这里是函数接口的本质
            V newValue = remappingFunction.apply(key, oldValue);
            if (newValue != null) {
                put(key, newValue);
                return newValue;
            } else {
                remove(key);
                return null;
            }
        } else {
            return null;
        }
    }

key的旧值不为null,新value值不为null则put,否则移除key。

3.4 remove

/** @since 1.8
     */
    default boolean remove(Object key, Object value) {
        Object curValue = get(key);
        if (!Objects.equals(curValue, value) ||
            (curValue == null && !containsKey(key))) {
            return false;
        }
        remove(key);
        return true;
    }

多了一步校验,没其他区别。

3.5 getForDefault

/** @since 1.8
     */
    default V getOrDefault(Object key, V defaultValue) {
        V v;
        return (((v = get(key)) != null) || containsKey(key))
            ? v
            : defaultValue;
    }

塞个默认值,不需要自己实现,已经自带了。

3.6 merge

/** @since 1.8
     */
    default V merge(K key, V value,
            BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
        Objects.requireNonNull(remappingFunction);
        Objects.requireNonNull(value);
        V oldValue = get(key);
        //这一步体现本质
        V newValue = (oldValue == null) ? value :
                   remappingFunction.apply(oldValue, value);
        if(newValue == null) {
            remove(key);
        } else {
            put(key, newValue);
        }
        return newValue;
    }

value值merge,排除value为null的key。

3.7 总结

map增加了参数为函数式接口的default方法,体现了观察者模式,这种设计模式。

我们也可以default方法,自己定义函数式接口参数,实现自己的特定功能。