1.调整某一层参数
有时候在运行过程中稍微改下模型的输入词大小,就会导致和原来模型不符的bug出现
RuntimeError: Error(s) in loading state_dict for TransformerLanguageModel:
size mismatch for output_project.weight: copying a param with shape torch.Size([4233, 320]) from checkpoint, the shape in current model is torch.Size([6354, 320]).
size mismatch for output_project.bias: copying a param with shape torch.Size([4233]) from checkpoint, the shape in current model is torch.Size([6354]).
之前模型词向量为4233,然后我的词增加到6354就会报上面的错,我们可以使用pytorch进行模型微调
# 微调部分
model_dict = self.model.state_dict() #现模型参数
state_dict = torch.load(checkpoint) #加载旧模型
#我这里是下面三层不一样,需要过滤掉
pretrained_dict = {k: v for k, v in state_dict['model'].items() if k in model_dict and k not in ["embedding.weight","output_project.weight","output_project.bias"]}
for k ,v in pretrained_dict.items(): #通过k,v来查看是那几层模型结构不一样
print(k,v.size())
model_dict.update(pretrained_dict) #更新现模型没有变的部分参数为旧模型参数
print("*"*100)
for k, v in model_dict.items(): #
print(k,v.size())
print(self.model)
self.model.load_state_dict(model_dict) #加载新的模型参数
2.调整输入或输出维度大小
使用torchvision中的现成模型
import torchvision.models as models
model = models.resnet18(pretrained=True)
In [29]: model #输入model可以看到预训练模型大小
Out[29]:
ResNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): BasicBlock(
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(1): BasicBlock(
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(layer2): Sequential(
(0): BasicBlock(
(conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(layer3): Sequential(
(0): BasicBlock(
(conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(layer4): Sequential(
(0): BasicBlock(
(conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(avgpool): AvgPool2d(kernel_size=7, stride=1, padding=0)
(fc): Linear(in_features=512, out_features=1000, bias=True)
)
可以通过观察看到上面有那些层,输入输出是多少维度,从而个性话调整到自己想要的
In [30]: input_features = model.fc.in_features
In [31]: input_features
Out[31]: 512
In [32]: out = model.fc.out_features
In [33]: out
Out[33]: 1000
#将model的in_features改为2000,但一般是只改输出大小
In [36]: model.fc.in_features = 2000
In [37]: print(model.fc)
Linear(in_features=2000, out_features=1000, bias=True)
In [38]: model.fc.out_features =50
In [39]: model.fc
Out[39]: Linear(in_features=2000, out_features=50, bias=True)
添加层并加载参数
import torchvision.models as models
import torch
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo
class CNN(nn.Module):
def __init__(self, block, layers, num_classes=9):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7, stride=1)
#新增一个反卷积层
self.convtranspose1 = nn.ConvTranspose2d(2048, 2048, kernel_size=3, stride=1, padding=1, output_padding=0, groups=1, bias=False, dilation=1)
#新增一个最大池化层
self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
#去掉原来的fc层,新增一个fclass层
self.fclass = nn.Linear(2048, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
#新加层的forward
x = x.view(x.size(0), -1)
x = self.convtranspose1(x)
x = self.maxpool2(x)
x = x.view(x.size(0), -1)
x = self.fclass(x)
return x
#加载model
resnet50 = models.resnet50(pretrained=True)
cnn = CNN(Bottleneck, [3, 4, 6, 3])
#读取参数
pretrained_dict = resnet50.state_dict()
model_dict = cnn.state_dict()
#将pretrained_dict里不属于model_dict的键剔除掉
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
#更新现有的model_dict
model_dict.update(pretrained_dict)
#加载我们真正需要的state_dict
cnn.load_state_dict(model_dict)
#print(resnet50)
print(cnn)
微调后重新训练可能需要调整不同层的学习率大小
pretrained_net
的fc
层就被随机初始化了,但是其他层依然保存着预训练得到的参数。由于是在很大的ImageNet数据集上预训练的,所以参数已经足够好,因此一般只需使用较小的学习率来微调这些参数,而fc
中的随机初始化参数一般需要更大的学习率从头训练。PyTorch可以方便的对模型的不同部分设置不同的学习参数,我们在下面代码中将fc
的学习率设为已经预训练过的部分的11倍。
output_params = list(map(id, pretrained_net.fc.parameters()))
feature_params = filter(lambda p: id(p) not in output_params, pretrained_net.parameters())
lr = 0.01
optimizer = optim.SGD([{'params': feature_params},
{'params': pretrained_net.fc.parameters(), 'lr': lr * 11}],
lr=lr, weight_decay=0.001)
# 最后一层fc的训练步长要更长
策略
Fine tuning 模型微调
在前面的介绍卷积神经网络的时候,说到过PyTorch已经为我们训练好了一些经典的网络模型,那么这些预训练好的模型是用来做什么的呢?其实就是为了我们进行微调使用的。
什么是微调
针对于某个任务,自己的训练数据不多,那怎么办? 没关系,我们先找到一个同类的别人训练好的模型,把别人现成的训练好了的模型拿过来,换成自己的数据,调整一下参数,再训练一遍,这就是微调(fine-tune)。PyTorch里面提供的经典的网络模型都是官方通过Imagenet的数据集与训练好的数据,如果我们的数据训练数据不够,这些数据是可以作为基础模型来使用的。
为什么要微调
1. 对于数据集本身很小(几千张图片)的情况,从头开始训练具有几千万参数的大型神经网络是不现实的,因为越大的模型对数据量的要求越大,过拟合无法避免。这时候如果还想用上大型神经网络的超强特征提取能力,只能靠微调已经训练好的模型。
2. 可以降低训练成本:如果使用导出特征向量的方法进行迁移学习,后期的训练成本非常低,用 CPU 都完全无压力,没有深度学习机器也可以做。
3. 前人花很大精力训练出来的模型在大概率上会比你自己从零开始搭的模型要强悍,没有必要重复造轮子。
迁移学习 Transfer Learning
总是有人把 迁移学习和神经网络的训练联系起来,这两个概念刚开始是无关的。 迁移学习是机器学习的分支,现在之所以 迁移学习和神经网络联系如此紧密,现在图像识别这块发展的太快效果也太好了,所以几乎所有的迁移学习都是图像识别方向的,所以大家看到的迁移学习基本上都是以神经网络相关的计算机视觉为主,本文中也会以这方面来举例子
迁移学习初衷是节省人工标注样本的时间,让模型可以通过一个已有的标记数据的领域向未标记数据领域进行迁移从而训练出适用于该领域的模型,直接对目标域从头开始学习成本太高,我们故而转向运用已有的相关知识来辅助尽快地学习新知识
举一个简单的例子就能很好的说明问题,我们学习编程的时候会学习什么? 语法、特定语言的API、流程处理、面向对象,设计模式,等等
这里面语法和API是每一个语言特有的,但是面向对象和设计模式可是通用的,我们学了JAVA,再去学C#,或者Python,面向对象和设计模式是不用去学的,因为原理都是一样的,甚至在学习C#的时候语法都可以少学很多,这就是迁移学习的概念,把统一的概念抽象出来,只学习不同的内容。
迁移学习按照学习方式可以分为基于样本的迁移,基于特征的迁移,基于模型的迁移,以及基于关系的迁移,这里就不详细介绍了。
二者关系
其实 "Transfer Learning" 和 "Fine-tune" 并没有严格的区分,含义可以相互交换,只不过后者似乎更常用于形容迁移学习的后期微调中。我个人的理解,微调应该是迁移学习中的一部分。微调只能说是一个trick。
如何微调
对于不同的领域微调的方法也不一样,比如语音识别领域一般微调前几层,图片识别问题微调后面几层,这个原因我这里也只能讲个大概,具体还要大神来解释:
对于图片来说,我们CNN的前几层学习到的都是低级的特征,比如,点、线、面,这些低级的特征对于任何图片来说都是可以抽象出来的,所以我们将他作为通用数据,只微调这些低级特征组合起来的高级特征即可,例如,这些点、线、面,组成的是园还是椭圆,还是正方形,这些代表的含义是我们需要后面训练出来的。
对于语音来说,每个单词表达的意思都是一样的,只不过发音或者是单词的拼写不一样,比如 苹果,apple,apfel(德语),都表示的是同一个东西,只不过发音和单词不一样,但是他具体代表的含义是一样的,就是高级特征是相同的,所以我们只要微调低级的特征就可以了。
下面只介绍下计算机视觉方向的微调,摘自 cs231
· ConvNet as fixed feature extractor.:其实这里有两种做法:
1. 使用最后一个fc layer之前的fc layer获得的特征,学习个线性分类器(比如SVM)
2. 重新训练最后一个fc layer
· Fine-tuning the ConvNet
固定前几层的参数,只对最后几层进行fine-tuning,
对于上面两种方案有一些微调的小技巧,比如先计算出预训练模型的卷积层对所有训练和测试数据的特征向量,然后抛开预训练模型,只训练自己定制的简配版全连接网络。 这个方式的一个好处就是节省计算资源,每次迭代都不会再去跑全部的数据,而只是跑一下简配的全连接
· Pretrained models
这个其实和第二种是一个意思,不过比较极端,使用整个pre-trained的model作为初始化,然后fine-tuning整个网络而不是某些层,但是这个的计算量是非常大的,就只相当于做了一个初始化。
注意事项
1. 新数据集和原始数据集合类似,那么直接可以微调一个最后的FC层或者重新指定一个新的分类器
2. 新数据集比较小和原始数据集合差异性比较大,那么可以使用从模型的中部开始训练,只对最后几层进行fine-tuning
3. 新数据集比较小和原始数据集合差异性比较大,如果上面方法还是不行的化那么最好是重新训练,只将预训练的模型作为一个新模型初始化的数据
4. 新数据集的大小一定要与原始数据集相同,比如CNN中输入的图片大小一定要相同,才不会报错
5. 如果数据集大小不同的话,可以在最后的fc层之前添加卷积或者pool层,使得最后的输出与fc层一致,但这样会导致准确度大幅下降,所以不建议这样做
6. 对于不同的层可以设置不同的学习率,一般情况下建议,对于使用的原始数据做初始化的层设置的学习率要小于(一般可设置小于10倍)初始化的学习率,这样保证对于已经初始化的数据不会扭曲的过快,而使用初始化学习率的新层可以快速的收敛。