一、前言
经过慎重考虑,决定新开一个系列,该系列文章主要的目的就是利用PyTorch、Python实现深度学习中的一些经典模型,接下来一段时间的安排如下:
- UNet
- ResNet
- VggNet
- AlexNet
本文首先实现UNet
二、网络结构详解
UNet总体上分为编码器和解码器,其中编码器负责提取特征信息,解码器负责还原特征信息;编码器主要由4个块组成,每个块分别由2个卷积层、1个最大池化层组成。解码器也是由4个块组成,每个块都是由1个上采样层、2个卷积层组成,详细信息请见下图。
三、网络组成部分实现
- 第1步:导入需要的包
import torch
import torch.nn as nn
import torch.nn.functional as F
- 第2步:我们需要自定义一个卷积的基础块,该基础块由2个卷积层组成。
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels, mid_channels=None):
super().__init__()
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
- 第3步:我们需要自定义一个编码器的基础块,该块由1个最大池化层和第2步的卷积基础块组成。
class Down(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
- 第4步:我们需要自定义一个解码器的基础块,该基础块由1个上采样层和2个卷积层组成。
class Up(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels, bilinear=True):
super().__init__()
# if bilinear, use the normal convolutions to reduce the number of channels
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) # 双线性插值
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
else:
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2) # 转置卷积
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
# input is CHW
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
- 第5步:定义一个最后的输出层
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
四、网络结构实现
- 第1步:我们需要把上述定义的类一股脑的导入到你要定义的网络文件中,因为每个人的文件夹不同,这里就不详细讲述。
- 第2步:初始化你的网络模型参数
- 第3步:编写前向传播方法
class UNet(nn.Module):
def __init__(self, args, n_channels, n_classes, bilinear=True):
super(UNet, self).__init__() # 简单点讲:就是子类使用父类的初始化方法进行初始化,这会使得代码非常的整洁
self.n_channels = n_channels
self.n_classes = n_classes
self.bilinear = bilinear
"""DoubleConv <-> (convolution => [BN] => ReLU) * 2"""
self.inc = DoubleConv(n_channels, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.down3 = Down(256, 512)
factor = 2 if bilinear else 1
self.down4 = Down(512, 1024 // factor)
self.up1 = Up(1024, 512 // factor, bilinear)
self.up2 = Up(512, 256 // factor, bilinear)
self.up3 = Up(256, 128 // factor, bilinear)
self.up4 = Up(128, 64, bilinear)
self.outc = OutConv(64, n_classes)
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
logits = self.outc(x)
return logits
至此,UNet经典网络结构就编写好了,是不是非常的简单呢?如果您觉得写的还不错,欢迎一键三连,这对我真的帮助很大,非常感谢!我也会继续努力,提升文章的质量与数量!