GPS时间服务器在电力监控系统中的应用方案

前言

    近几年来,随着计算机自动化系统水平的提高,在各大计算机监控系统、微机保护装置、微机故障录波装置以及各类数据管理机得到了广泛的应用,而这些自动装置的配合工作需要有一个精确统一的时间。当系统发生故障时,既可实现全站各系统在统一时间基准下的运行监控和事故后故障分析,也可以通过各保护动作、开关分合的先后顺序及准确时间来分析事故的原因及过程,方便对运行中出现的各种事件的分析和追溯,提高了系统的自动化水平。

一、概述 

“同步”概念是指频率的同步,即网络各个节点的时钟频率和相位同步,其误差应符合相关标准的规定。目前,在通信网中,频率和相位同步问题已经基本解决,而时间的同步还没有得到很好的解决。时间同步是指网络各个节点时钟以及通过网络连接的各个应用界面的时钟的时刻和时间间隔与协调世界时(UTC)同步,最起码在一个局域或城域网络内要和北京时间同步。时间同步网络是保证时间同步的基础,构成时间同步网络可以采取有线方式,也可以采取无线方式。在这里我们主要介绍互联网时间同步技术及产品,也就是通过支持NTP协议的GPS时间服务器实现网络时间同步。

SI单位制)的七个基本单位之一。1967年的国际计量大会(CGDM)给出了新的秒定义:“秒是铯133(133Cs)原子在0K温度基态的两个超精细能级之间跃迁所对应辐射的9 192 631 770个周期所持续的时间”,即“原子秒”(TAI)。现在常用的协调世界时实际上是经过闰秒调整的原子秒。 

5×10-15,已接近国际先进水平。其实,在应用层面上并不需要国家基准这样高的时间和频率准确度。不同的应用对准确度的要求是不同的,表1列举了一些典型的应用对时间准确度的要求(应用界面时间相对于UTC时间的误差)。 

1:一些典型的应用对时间精度的应用

应用 

时间精度要求 

 用于银行、证券、股票和期货交易的计算机和服务器 

秒 

 电力线故障诊断 

微秒 

 交换机及计费系统 

秒 

和TD-SCDMA 

毫秒 

 网管系统 

毫秒 

号信令监测系统 

毫秒 

二、网络时间同步技术

目前有多种时间同步技术,每一种技术都各有特点,不同技术的时间同步精度也存在较大的差异,如表2所示:

2:各种常用的时间同步技术

时间同步技术 

准确度 

覆盖范围 

短波授时 

1~10毫秒 

全球 

长波授时 

1毫秒 

区域 

GPS 

5~500纳秒 

全球 

电话拨号授时 

100毫秒 

全球 

互联网授时(NTP) 

1~50毫秒 

全球 

SDH传输网授时 

100纳秒 

长途 

、  长短波授时时间同步技术

80多年的历史,国际上长波授时主要使用罗兰-C系统,国内发射台设在沿海地区,主要用于军事和导航,尚不民用。

、  电话拨号时间同步技术

ACTS)使用的设备相对简单,只需电话线、模拟调制解调器、PC及客户端软件即可。目前这种计算机主要用于校准家庭个人计算机时间,同时不具备实时性。

、  GPS时间同步技术

时间同步技术是当前较成熟并在国际上广泛采用的时间同步技术。目前国际上除了美国的GPS还有前苏联的GLANASS系统和我国的“北斗”系统。GLANASS系统由于经济原因,健康星的数量有限,稳定性和可靠性无法保障。“北斗”系统也已开始推广民用。

、  互联网时间同步技术

NTP)嵌入到Windows XP系统中,只要计算机能联网,就能进行局域网或广域网内的计算机时间校准。标准的NTP协议采用的是RFC 1350标准,简化的网络时间协议(SNTP)采用的是RFC 1769标准。NTP协议包含一个64bit的协调世界时(UTC)时间戳,时间分辨率时200ps,并可以提供1~50ms的时间精度(依赖网络负载)。但实验表明这种技术在洲际间的校准精度只能达到几百毫秒甚至只能达到秒的量级。所以,在庞大的网络中应设立一级和二级时间服务器来解决精度的问题。

Time协议(RFC868)和Daytime协议(RFC867),可以提供1s校准精度的广域网时间同步。

三、GPS时间服务器

GPS时间服务器是GPS时间同步技术和互联网时间同步技术的结合。采用19英寸1U机架式设计,内置GPS接收机,以GPS卫星时间为标准时间源,支持NTP协议(V2.0/V3.0/V4.0)和SNTP协议。能够为局域网内成百上千的计算机、路由器等提供时间校准。下图为GPS时间服务器的应用方案:

 

电力监控系统界面设计_网络时间协议

时间服务器那么地市级网络中的客户端由于网络延时等原因不能保证所需精度,那么通过在地市级网络中也设立GPS时间服务器就能解决这一问题,但是如果网络条件较好的情况下,这种误差NTP协议时可以自动补偿过来的。