public static class Encryption
{
#region silverlight数据加密
/**/
/// <summary>
/// 加密数据
/// </summary>
/// <param name="input">加密前的字符串</param>
/// <returns>加密后的字符串</returns>
public static string Encrypt(string input)
{
//定义的字符串
string saltValue = "saltValue";
// 密码值
string pwdValue = "pwdValue"; byte[] data = System.Text.UTF8Encoding.UTF8.GetBytes(input);
byte[] salt = System.Text.UTF8Encoding.UTF8.GetBytes(saltValue); // AesManaged - 高级加密标准(AES) 对称算法的管理类
System.Security.Cryptography.AesManaged aes = new System.Security.Cryptography.AesManaged(); // Rfc2898DeriveBytes - 通过使用基于 HMACSHA1 的伪随机数生成器,实现基于密码的密钥派生功能 (PBKDF2 - 一种基于密码的密钥派生函数)
// 通过 密码 和 salt 派生密钥
System.Security.Cryptography.Rfc2898DeriveBytes rfc = new System.Security.Cryptography.Rfc2898DeriveBytes(pwdValue, salt); /**/
/*
* AesManaged.BlockSize - 加密操作的块大小(单位:bit)
* AesManaged.LegalBlockSizes - 对称算法支持的块大小(单位:bit)
* AesManaged.KeySize - 对称算法的密钥大小(单位:bit)
* AesManaged.LegalKeySizes - 对称算法支持的密钥大小(单位:bit)
* AesManaged.Key - 对称算法的密钥
* AesManaged.IV - 对称算法的密钥大小
* Rfc2898DeriveBytes.GetBytes(int 需要生成的伪随机密钥字节数) - 生成密钥
*/
aes.BlockSize = aes.LegalBlockSizes[0].MaxSize;
aes.KeySize = aes.LegalKeySizes[0].MaxSize;
aes.Key = rfc.GetBytes(aes.KeySize / 8);
aes.IV = rfc.GetBytes(aes.BlockSize / 8); // 用当前的 Key 属性和初始化向量 IV 创建对称加密器对象
System.Security.Cryptography.ICryptoTransform encryptTransform = aes.CreateEncryptor(); // 加密后的输出流
System.IO.MemoryStream encryptStream = new System.IO.MemoryStream(); // 将加密后的目标流(encryptStream)与加密转换(encryptTransform)相连接
System.Security.Cryptography.CryptoStream encryptor = new System.Security.Cryptography.CryptoStream
(encryptStream, encryptTransform, System.Security.Cryptography.CryptoStreamMode.Write); // 将一个字节序列写入当前 CryptoStream (完成加密的过程)
encryptor.Write(data, 0, data.Length);
encryptor.Close(); // 将加密后所得到的流转换成字节数组,再用Base64编码将其转换为字符串
string encryptedString = Convert.ToBase64String(encryptStream.ToArray()); return encryptedString;
}
#endregion #region silverlight密码解密
/**/
/// <summary>
/// 解密数据
/// </summary>
/// <param name="input">加密后的字符串</param>
/// <returns>加密前的字符串</returns>
public static string Decrypt(string input)
{
// 盐值(与加密时设置的值一致)
string saltValue = "saltValue";
// 密码值(与加密时设置的值一致)
string pwdValue = "pwdValue"; byte[] encryptBytes = Convert.FromBase64String(input);
byte[] salt = System.Text.Encoding.UTF8.GetBytes(saltValue); System.Security.Cryptography.AesManaged aes = new System.Security.Cryptography.AesManaged();
System.Security.Cryptography.Rfc2898DeriveBytes rfc = new System.Security.Cryptography.Rfc2898DeriveBytes(pwdValue, salt);
aes.BlockSize = aes.LegalBlockSizes[0].MaxSize;
aes.KeySize = aes.LegalKeySizes[0].MaxSize;
aes.Key = rfc.GetBytes(aes.KeySize / 8);
aes.IV = rfc.GetBytes(aes.BlockSize / 8); // 用当前的 Key 属性和初始化向量 IV 创建对称解密器对象
System.Security.Cryptography.ICryptoTransform decryptTransform = aes.CreateDecryptor(); // 解密后的输出流
System.IO.MemoryStream decryptStream = new System.IO.MemoryStream(); // 将解密后的目标流(decryptStream)与解密转换(decryptTransform)相连接
System.Security.Cryptography.CryptoStream decryptor = new System.Security.Cryptography.CryptoStream(
decryptStream, decryptTransform, System.Security.Cryptography.CryptoStreamMode.Write); // 将一个字节序列写入当前 CryptoStream (完成解密的过程)
decryptor.Write(encryptBytes, 0, encryptBytes.Length);
decryptor.Close(); // 将解密后所得到的流转换为字符串
byte[] decryptBytes = decryptStream.ToArray();
string decryptedString = System.Text.UTF8Encoding.UTF8.GetString(decryptBytes, 0, decryptBytes.Length); return decryptedString;
}
#endregion }
(2)
/// <summary>
/// 加密解密辅助类
/// </summary>
public class EncrptHelp
{
/// <summary>
/// 加密
/// </summary>
/// <param name="sText"></param>
/// <returns></returns>
public static string SimpleEncrpt(string sText)
{
byte[] btBuffer = System.Text.Encoding.UTF8.GetBytes(sText);
for (int i = 0; i < btBuffer.Length; i++)
{
btBuffer[i] = SwithByte(btBuffer[i]);
}
return System.Convert.ToBase64String(btBuffer);
}
private static byte SwithByte(byte bSouce)
{
int bResult = bSouce;
int bTemp1, bTemp2;
int nStep = 6;
byte bMark;
int nCount = 0;
int nWhileRange = 2; for (int i = 0; i < 2; i++)
{
while (nCount < nWhileRange)
{
bTemp1 = bResult & m_aryByteTable[nCount];
bTemp1 = bTemp1 << nStep;
bTemp2 = bResult & m_aryByteTable[nCount + nStep];
bTemp2 = bTemp2 >> nStep;
if (bTemp1 != 0)
bResult = bResult | bTemp1;
else
{
bMark = m_aryByteTableMark[nCount + nStep];
bResult = bResult & bMark | bTemp1;
} if (bTemp2 != 0)
bResult = bResult | bTemp2;
else
{
bMark = m_aryByteTableMark[nCount];
bResult = bResult & bMark | bTemp1;
}
nCount++;
}
nStep = 2;
nWhileRange = 4;
}
return (byte)bResult;
}
private readonly static byte[] m_aryByteTable = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 };
private readonly static byte[] m_aryByteTableMark = { 0xFE, 0xFD, 0xFB, 0xF7, 0xEF, 0xDF, 0xBF, 0x7F }; // URL中的特殊字符
//有些符号在URL中是不能直接传递的,如果要在URL中传递这些特殊符号,那么就要使用他们的编码了。编码的格式为:%加字符的ASCII码,即一个百分号%,后面跟对应字符的ASCII(16进制)码值。例如 空格的编码值是"%20"。 //1. + URL 中+号表示空格 %2B
//2. 空格 URL中的空格可以用+号或者编码 %20
//3. / 分隔目录和子目录 %2F
//4. ? 分隔实际的 URL 和参数 %3F
//5. % 指定特殊字符 %25
//6. # 表示书签 %23
//7. & URL 中指定的参数间的分隔符 %26
//8. = URL 中指定参数的值 %3D
public static string UrlEncode(string sText)
{
return sText.Replace("+", "%2B").
Replace(" ", "%20").
Replace("/", "%2F").
Replace("?", "%3F").
Replace("%", "%25").
Replace("#", "%23").
Replace("&", "%26").
Replace("=", "%3D");
}
加密URL Scheme链接 如何测试传的值
转载本文章为转载内容,我们尊重原作者对文章享有的著作权。如有内容错误或侵权问题,欢迎原作者联系我们进行内容更正或删除文章。
提问和评论都可以,用心的回复会被更多人看到
评论
发布评论
相关文章