1.测试环境

一台Linux服务器电脑(可联网)

NVIDIA显卡

注意:仅仅测试浮点运算性能和内存带宽

2.安装测试软件

2.1检查驱动版本

输入指令nvidia-smi,主要是判断显卡驱动有没有安装。如果指令存在可显示如下:

lu@host:/usr/local$ nvidia-smi 
Fri Nov  3 00:26:46 2023       
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.113.01             Driver Version: 535.113.01   CUDA Version: 12.2     |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  NVIDIA GeForce GTX 1660 ...    Off | 00000000:01:00.0 Off |                  N/A |
| 29%   34C    P8              N/A /  N/A |    348MiB /  6144MiB |     33%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
                                                                                         
+---------------------------------------------------------------------------------------+
| Processes:                                                                            |
|  GPU   GI   CI        PID   Type   Process name                            GPU Memory |
|        ID   ID                                                             Usage      |
|=======================================================================================|
|    0   N/A  N/A       890      G   /usr/lib/xorg/Xorg                           45MiB |
|    0   N/A  N/A      1432      G   /usr/lib/xorg/Xorg                          129MiB |
|    0   N/A  N/A      1667      G   /usr/bin/gnome-shell                         30MiB |
|    0   N/A  N/A      2352      G   ...3584735,16244303988823860755,262144      131MiB |
+---------------------------------------------------------------------------------------+
lu@host:/usr/local$

可以看到535最高支持cuda-12.2版本,我这里安装cuda-12.2.0显然满足要求(驱动版本可以高于对应cuda版本)。此时可直接跳过显卡驱动安装过程,直接按装cuda,否则指令不存在或者最高支持的版本小于12.2则需要安装或者更新驱动。

2.2安装显卡驱动

如果有安装过旧的驱动,需要先删除旧的驱动:

sudo apt-get purge nvidia*

确认显卡型号

查明你的NVIDIA显卡型号,以确保下载驱动程序的版本:

lspci | grep -i vga
root@Computer:~# lspci | grep VGA
00:02.0 VGA compatible controller: Intel Corporation HD Graphics 630 (rev 04)
01:00.0 VGA compatible controller: NVIDIA Corporation GP102 [GeForce GTX 1080 Ti 8GB] (rev a1)
root@Computer:~#

下载NVIDIA驱动

前往官方网站:NVIDIA官网

Geekbench linux测试gpu linux测试显卡性能_linux

禁用显卡驱动源-nouveau

查看nouveau是否在运行,先输入指令

lsmod | grep nouveau

如果不出现以下的情况则已经禁用,可跳过该步骤。

Geekbench linux测试gpu linux测试显卡性能_Memory_02

打开文件blacklist文件

sudo vim /etc/modprobe.d/blacklist-nouveau.conf

在文件的最后加入这两行指令 

blacklist nouveau
options nouveau modeset=0

更新一下

sudo update-initramfs -u

 输入这个指令,查看是否禁用nouveau(如果没有,重启)

lsmod | grep nouveau

Geekbench linux测试gpu linux测试显卡性能_运维_03

安装驱动

将驱动传到服务器,打开终端

#先更改文件的权限
sudo chmod  a+x NVIDIA-Linux-x86_64-550.54.14.run

#使用指令进行安装 
sudo ./NVIDIA-Linux-x86_64-550.54.14.run -no-x-check -no-nouveau-check -no-opengl-files

-no-x-check:安装驱动时关闭X服务

-no-nouveau-check:安装驱动时禁用nouveau

-no-opengl-files:只安装驱动文件,不安装OpenGL文件

进入后,选择continue installation

接下里会进入图形化界面,一路选择 yes / ok 就好

检验是否安装成功

重启电脑,查看nvidia驱动:

nvidia-smi

2.3安装CUDA

下载cuda:

链接:CUDA Toolkit Archive | NVIDIA Developer

CUDA推荐下载.run可以根据提示安装,执行如下命令:

sudo bash cuda_12.2.0_535.54.03_linux.run
 
压住回车键,直到服务条款显示到100%。接着按下面的步骤选择:
 
accept
 
n(不要安装driver)
 
y
 
y
 
y

安装完成后,设置环境变量

打开主目录下的 .bashrc文件添加如下路径,例如我的.bashrc文件在/home/lu/下。
 
    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-12.2/lib64
    export PATH=$PATH:/usr/local/cuda-12.2/bin
    export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-12.2
 
终端运行:source ~/.bashrc
 
检查:nvcc --version

2.4cudnn的安装

下载安装文件

按需求下载cudnn的安装文件:cuDNN Archive | NVIDIA Developer

安装cudnn

解压下载的文件,可以看到cuda文件夹,在当前目录打开终端,执行如下命令:

sudo cp cuda/include/cudnn* /usr/local/cuda/include/
     
   sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/
     
   sudo chmod a+r /usr/local/cuda/include/cudnn*
     
   sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

查看cudnn版本

在终端输入

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

3.性能测试及结果分析

进入到/usr/local/cuda/samples目录

root@Computer:/usr/local/cuda/samples# ll
总用量 108
drwxr-xr-x 11 root root  4096 5月  14 16:59 ./
drwxr-xr-x 16 root root  4096 10月 27  2021 ../
drwxr-xr-x 52 root root  4096 10月 27  2021 0_Simple/
drwxr-xr-x  8 root root  4096 10月 27  2021 1_Utilities/
drwxr-xr-x 13 root root  4096 10月 27  2021 2_Graphics/
drwxr-xr-x 22 root root  4096 10月 27  2021 3_Imaging/
drwxr-xr-x 10 root root  4096 10月 27  2021 4_Finance/
drwxr-xr-x 10 root root  4096 10月 27  2021 5_Simulations/
drwxr-xr-x 34 root root  4096 10月 27  2021 6_Advanced/
drwxr-xr-x 40 root root  4096 10月 27  2021 7_CUDALibraries/
drwxr-xr-x  6 root root  4096 10月 27  2021 common/
-rw-r--r--  1 root root 59776 10月 27  2021 EULA.txt
-rw-r--r--  1 root root  2606 10月 27  2021 Makefile

3.1GPU 的详细规格和特性

首先,进入 CUDA Samples 的 1_Utilities/deviceQuery 目录,编译 deviceQuery 工具:

cd 1_Utilities/deviceQuery 
make

运行 deviceQuery 工具:

root@Computer:/usr/local/cuda/samples/1_Utilities/deviceQuery# ./deviceQuery
./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GTX 1060 6GB"
  CUDA Driver Version / Runtime Version          10.1 / 10.1
  CUDA Capability Major/Minor version number:    6.1
  Total amount of global memory:                 6078 MBytes (6373572608 bytes)
  (10) Multiprocessors, (128) CUDA Cores/MP:     1280 CUDA Cores
  GPU Max Clock rate:                            1785 MHz (1.78 GHz)
  Memory Clock rate:                             4004 Mhz
  Memory Bus Width:                              192-bit
  L2 Cache Size:                                 1572864 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 2 copy engine(s)
  Run time limit on kernels:                     Yes
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Device supports Compute Preemption:            Yes
  Supports Cooperative Kernel Launch:            Yes
  Supports MultiDevice Co-op Kernel Launch:      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 1 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.1, CUDA Runtime Version = 10.1, NumDevs = 1
Result = PASS

这将显示关于 CUDA 设备的详细信息,包括计算能力(Compute Capability)、核心数量、内存信息、CUDA 支持的特性以及一些性能指标。例如,你的设备有 10 个多处理器(SMs),每个 SM 有 128 个 CUDA 核心,总共有 1280 个 CUDA 核心。这些信息对于开发和优化 CUDA 应用程序非常有用。

3.2浮点运算性能

首先,进入 CUDA Samples 的 0_Simple/matrixMul/ 目录,编译 matrixMul工具:

cd 0_Simple/matrixMul/
make

运行 matrixMul工具:

root@Computer:/usr/local/cuda/samples/0_Simple/matrixMul# ./matrixMul
[Matrix Multiply Using CUDA] - Starting...
GPU Device 0: "GeForce GTX 1060 6GB" with compute capability 6.1

MatrixA(320,320), MatrixB(640,320)
Computing result using CUDA Kernel...
done
Performance= 531.11 GFlop/s, Time= 0.247 msec, Size= 131072000 Ops, WorkgroupSize= 1024 threads/block
Checking computed result for correctness: Result = PASS

NOTE: The CUDA Samples are not meant for performancemeasurements. Results may vary when GPU Boost is enabled.
root@Computer:/usr/local/cuda/samples/0_Simple/matrixMul#

执行矩阵乘法测试GPU浮点运算性能:

  • GPU是"NVIDIA GeForce GTX 1060 6GB",具有6.1的计算能力。
  • 示例中矩阵A的规模是320x320,矩阵B的规模是640x320。
  • 示例使用CUDA内核计算矩阵乘法的结果。
  • 计算完成后,示例报告了性能指标:531.11 GFlop/s(每秒十亿次浮点运算),计算时间为0.247毫秒,操作数量为131072000次,每个工作组有1024个线程。
  • 显示"Result = PASS",这意味着计算结果是正确的。

3.3内存带宽评估

进入 CUDA Samples 的 1_Utilities/bandwidthTest 目录, 编译bandwidthTest

cd 1_Utilities/bandwidthTest
make

运行 bandwidthTest 工具:

root@Computer:/usr/local/cuda/samples/1_Utilities/bandwidthTest# ./bandwidthTest
[CUDA Bandwidth Test] - Starting...
Running on...

 Device 0: GeForce GTX 1060 6GB
 Quick Mode

 Host to Device Bandwidth, 1 Device(s)
 PINNED Memory Transfers
   Transfer Size (Bytes)        Bandwidth(GB/s)
   32000000                     6.2

 Device to Host Bandwidth, 1 Device(s)
 PINNED Memory Transfers
   Transfer Size (Bytes)        Bandwidth(GB/s)
   32000000                     6.0

 Device to Device Bandwidth, 1 Device(s)
 PINNED Memory Transfers
   Transfer Size (Bytes)        Bandwidth(GB/s)
   32000000                     149.8

Result = PASS

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.

具体的结果如下:

  • Host to Device Bandwidth:对于 32,000,000 字节的数据,带宽为 6.2 GB/s。
  • Device to Host Bandwidth:对于 32,000,000 字节的数据,带宽为 6.0 GB/s。
  • Device to Device Bandwidth:对于 32,000,000 字节的数据,带宽为 149.8 GB/s。

最后,程序显示 “Result = PASS”,这意味着带宽测试成功完成,没有检测到错误。

这将显示 GPU 的内存带宽信息,包括主机到设备的带宽、设备到主机的带宽等。