PyTorch是一个基于Python的库,提供了一个具有灵活易用的深度学习框架,是近年来最受欢迎的深度学习框架之一。PyTorch简单、易用、上手快,在CV、NLP深度强化学习都会涉及,PyTorch和Python结合良好,并且拥有强大的社区支持。
1 初识PyTorch
1.1 张量
1.导入pytorch包
import torch
2.创建一个空的5x3张量
x = torch.empty(5, 3)print(x)
3.创建一个随机初始化的5x3张量
x = torch.rand(5, 3)print(x)
4.创建一个5x3的0张量,类型为long
x = torch.zeros(5, 3, dtype=torch.long)print(x)
5.直接从数组创建张量
x = torch.tensor([5.5, 3])print(x)
6.创建一个5x3的单位张量,类型为double
x = torch.ones(5, 3, dtype=torch.double)print(x)
7.从已有的张量创建相同维度的新张量,并且重新定义类型为float
x = torch.randn_like(x, dtype=torch.float)print(x)
8.打印一个张量的维度
print(x.size())
9.将两个张量相加
y = torch.rand(5, 3)print(x + y)# 方法二# print(torch.add(x, y))# 方法三# result = torch.empty(5, 3)# torch.add(x, y, out=result)# print(result)# 方法四# y.add_(x)# print(y)
10.取张量的第一列
print(x[:, 1])
11.将一个4x4的张量resize成一个一维张量
x = torch.randn(4, 4)
y = x.view(16)print(x.size(),y.size())
12.将一个4x4的张量,resize成一个2x8的张量
y = x.view(2, 8)print(x.size(),y.size())# 方法二
z = x.view(-1, 8) # 确定一个维度,-1的维度会被自动计算print(x.size(),z.size())
13.从张量中取出数字
x = torch.randn(1)print(x)print(x.item())
1.2 Numpy的操作
14.将张量装换成numpy数组
a = torch.ones(5)print(a)
b = a.numpy()print(b)
15.将张量+1,并观察上题中numpy数组的变化
a.add_(1)print(a)print(b)
16.从numpy数组创建张量
import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)print(a)print(b)
17.将numpy数组+1并观察上题中张量的变化
np.add(a, 1, out=a)print(a)print(b)
2 自动微分
2.1 张量的自动微分
18.新建一个张量,并设置requires_grad=True
x = torch.ones(2, 2, requires_grad=True)print(x)
19.对张量进行任意操作(y = x + 2)
y = x + 2print(y)print(y.grad_fn) # y就多了一个AddBackward
20.再对y进行任意操作
z = y * y * 3
out = z.mean()print(z) # z多了MulBackwardprint(out) # out多了MeanBackward
2.2 梯度
21.对out进行反向传播
out.backward()
22.打印梯度d(out)/dx
print(x.grad) #out=0.25*Σ3(x+2)^2
23.创建一个结果为矢量的计算过程(y=x*2^n)
x = torch.randn(3, requires_grad=True)
y = x * 2while y.data.norm() < 1000:
y = y * 2print(y)
24.计算v = [0.
1, 1.0, 0.0001]
处的梯度
v = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)
y.backward(v)print(x.grad)
25.关闭梯度的功能
print(x.requires_grad)print((x ** 2).requires_grad)with torch.no_grad():print((x ** 2).requires_grad)# 方法二# print(x.requires_grad)# y = x.detach()# print(y.requires_grad)# print(x.eq(y).all())
3 神经网络
这部分会实现LeNet5,结构如下所示
import torchimport torch.nn as nnimport torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()# 26.定义①的卷积层,输入为32x32的图像,卷积核大小5x5卷积核种类6self.conv1 = nn.Conv2d(3, 6, 5)# 27.定义③的卷积层,输入为前一层6个特征,卷积核大小5x5,卷积核种类16self.conv2 = nn.Conv2d(6, 16, 5)# 28.定义⑤的全链接层,输入为16*5*5,输出为120self.fc1 = nn.Linear(16 * 5 * 5, 120) # 6*6 from image dimension# 29.定义⑥的全连接层,输入为120,输出为84self.fc2 = nn.Linear(120, 84)# 30.定义⑥的全连接层,输入为84,输出为10self.fc3 = nn.Linear(84, 10)def forward(self, x):# 31.完成input-S2,先卷积+relu,再2x2下采样
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))# 32.完成S2-S4,先卷积+relu,再2x2下采样
x = F.max_pool2d(F.relu(self.conv2(x)), 2) #卷积核方形时,可以只写一个维度# 33.将特征向量扁平成列向量
x = x.view(-1, 16 * 5 * 5)# 34.使用fc1+relu
x = F.relu(self.fc1(x))# 35.使用fc2+relu
x = F.relu(self.fc2(x))# 36.使用fc3
x = self.fc3(x)return x
net = Net()print(net)
37.打印网络的参数
params = list(net.parameters())# print(params)print(len(params))
38.打印某一层参数的形状
print(params[0].size())
39.随机输入一个向量,查看前向传播输出
input = torch.randn(1, 1, 32, 32)
out = net(input)print(out)
40.将梯度初始化
net.zero_grad()
41.随机一个梯度进行反向传播
out.backward(torch.randn(1, 10))
3.2 损失函数
42.用自带的MSELoss()定义损失函数
criterion = nn.MSELoss()
43.随机一个真值,并用随机的输入计算损失
target = torch.randn(10) # 随机真值
target = target.view(1, -1) # 变成列向量
output = net(input) # 用随机输入计算输出
loss = criterion(output, target) # 计算损失print(loss)
44.将梯度初始化,计算上一步中loss的反向传播
net.zero_grad()print('conv1.bias.grad before backward')print(net.conv1.bias.grad)
45.计算43中loss的反向传播
loss.backward()print('conv1.bias.grad after backward')print(net.conv1.bias.grad)
3.3 更新权重
46.定义SGD优化器算法,学习率设置为0.01
import torch.optim as optim
optimizer = optim.SGD(net.parameters(), lr=0.01)
47.使用优化器更新权重
optimizer.zero_grad()
output = net(input)
loss = criterion(output, target)
loss.backward()# 更新权重
optimizer.step()
4 训练一个分类器
4.1 读取CIFAR10数据,做标准化
48.构造一个transform,将三通道(0,1)区间的数据转换成(-1,1)的数据
import torchvisionimport torchvision.transforms as transforms
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
读取数据集
trainset = cifar(root = './input/cifar10', segmentation='train', transforms=transform)
testset = cifar(root = './input/cifar10', segmentation='test', transforms=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck')
4.2 建立网络
这部分沿用前面的网络
net2 = Net()
4.3 定义损失函数和优化器
49.定义交叉熵损失函数
criterion2 = nn.CrossEntropyLoss()
50.定义SGD优化器算法,学习率设置为0.001,momentum=0.9
optimizer2 = optim.SGD(net2.parameters(), lr=0.001, momentum=0.9)
4.4训练网络
for epoch in range(2):
running_loss = 0.0for i, data in enumerate(trainloader, 0):# 获取X,y对
inputs, labels = data# 51.初始化梯度
optimizer2.zero_grad()# 52.前馈
outputs = net2(inputs)# 53.计算损失
loss = criterion2(outputs, labels)# 54.计算梯度
loss.backward()# 55.更新权值
optimizer2.step()# 每2000个数据打印平均代价函数值
running_loss += loss.item()if i % 2000 == 1999: # print every 2000 mini-batchesprint('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0print('Finished Training')
4.5 使用模型预测
取一些数据
dataiter = iter(testloader)
images, labels = dataiter.next()# print images
imshow(torchvision.utils.make_grid(images))print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
56.使用模型预测
outputs = net2(images)
_, predicted = torch.max(outputs, 1)print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]for j in range(4)))
57.在测试集上进行打分
correct = 0
total = 0with torch.no_grad():for data in testloader:
images, labels = data
outputs = net2(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
4.6 存取模型
58.保存训练好的模型
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)
59.读取保存的模型
pretrained_net = torch.load(PATH)
60.加载模型
net3 = Net()
net3.load_state_dict(pretrained_net)