本文主要介绍logistic回归相关知识点和一个手写识别的例子实现

一、logistic回归介绍:

logistic回归算法很简单,这里简单介绍一下:

1、和线性回归做一个简单的对比

下图就是一个简单的线性回归实例,简单一点就是一个线性方程表示

数据挖掘回归问题 数据挖掘logistic回归_logistic回归

(就是用来描述自变量和因变量已经偏差的方程)


2、logistic回归

可以看到下图,很难找到一条线性方程能将他们很好的分开。这里也需要用到logistic回归来处理了。

数据挖掘回归问题 数据挖掘logistic回归_logistic回归_02


logistic回归本质上是线性回归,只是在特征到结果的映射中加入了一层函数映射,即先把特征线性求和,然后使用函数g(z)将最为假设函数来预测。g(z)可以将连续值映射到0和1上。
logistic回归的假设函数如下,线性回归假设函数只是数据挖掘回归问题 数据挖掘logistic回归_机器学习_03

数据挖掘回归问题 数据挖掘logistic回归_机器学习_04



logistic回归用来分类0/1问题,也就是预测结果属于0或者1的二值分类问题。这里假设了二值满足伯努利分布,也就是

数据挖掘回归问题 数据挖掘logistic回归_数据_05



其实这里求的是最大似然估计,然后求导,最后得到迭代公式结果为

数据挖掘回归问题 数据挖掘logistic回归_数据_06

可以看到与线性回归类似。

3、logistic回归原理介绍

(1)找一个合适的预测函数,一般表示为h函数,该函数就是我们需要找的分类函数,它用来预测输入数据的判断结果。


(2)构造一个Cost函数(损失函数),该函数表示预测的输出(h)与训练数据类别(y)之间的偏差,可以是二者之间的差(h-y)或者是其他的形式。综合考虑所有训练数据的“损失”,将Cost求和或者求平均,记为J(θ)函数,表示所有训练数据预测值与实际类别的偏差。

数据挖掘回归问题 数据挖掘logistic回归_数据_07


实际上这里的Cost函数和J(θ)函数是基于最大似然估计推导得到的,这里也就不详细讲解了。

(3)我们可以看出J(θ)函数的值越小表示预测函数越准确(即h函数越准确),所以这一步需要做的是找到J(θ)函数的最小值,Logistic Regression实现时有的是梯度下降法(Gradient Descent)。

数据挖掘回归问题 数据挖掘logistic回归_数据_06


梯度下降法是按下面的流程进行的:
1)首先对θ赋值,这个值可以是随机的,也可以让θ是一个全零的向量。
2)改变θ的值,使得J(θ)按梯度下降的方向进行减少。
梯度方向由J(θ)对θ的偏导数确定,由于求的是极小值,因此梯度方向是偏导数的反方向。结果为

数据挖掘回归问题 数据挖掘logistic回归_数据_06


迭代更新的方式有两种,一种是批梯度下降,也就是对全部的训练数据求得误差后再对θ进行更新,另外一种是增量梯度下降,每扫描一步都要对θ进行更新。前一种方法能够不断收敛,后一种方法结果可能不断在收敛处徘徊。

二、手写识别的例子实现


1、简介


手写识别的概念:是指将在手写设备上书写时产生的轨迹信息转化为具体字码。


手写识别系统是个很大的项目,识别汉字、英语、数字、其他字符。本文重点不在手写识别而在于理解logistic,因此只识别0~9单个数字。


讲到用logistic算法识别数字0~9,这是个十类别问题,如果要用logistic回归,得做10次logistic回归,第一次将0作为一个类别,1~9作为另外一个类别,这样就可以识别出0或非0。同样地可以将1作为一个类别,0、2~9作为一个类别,这样就可以识别出1或非1........


本文的实例为了简化,我只选出0和1的样本,这是个二分类问题。


输入格式:每个手写数字已经事先处理成32*32的二进制文本,存储为txt文件。


工程文件目录说明:

数据挖掘回归问题 数据挖掘logistic回归_数据_10


logistic regression.py实现的功能:从train里面读取训练数据,然后用梯度上升算法训练出参数Θ,接着用参数Θ来预测test里面的测试样本,同时计算错误率。


打开test或者train一个文件看看:


数据挖掘回归问题 数据挖掘logistic回归_机器学习_11


2、简单实现:

(1)将每个图片(即txt文本)转化为一个向量,即32*32的数组转化为1*1024的数组,这个1*1024的数组用机器学习的术语来说就是特征向量。

(2)训练样本中有m个图片,可以合并成一个m*1024的矩阵,每一行对应一个图片。

(3)用梯度下降法计算得到回归系数。

(4)分类,根据参数weigh对测试样本进行预测,同时计算错误率。

代码如下:


# -*- coding: utf-8 -*-
from numpy import *
from os import listdir

"""
(1)将每个图片(即txt文本)转化为一个向量,即32*32的数组转化为1*1024的数组,这个1*1024的数组用机器学习的术语来说就是特征向量。
实现的功能是从文件夹中读取所有文件,并将其转化为矩阵返回
如调用loadData('train'),则函数会读取所有的txt文件('0_0.txt'一直到'1_150.txt')
并将每个txt文件里的32*32个数字转化为1*1024的矩阵,最终返回大小是m*1024的矩阵
同时返回每个txt文件对应的数字,0或1
"""
def loadData(direction):
    print(direction)
    trainfileList=listdir(direction)
    m=len(trainfileList)
    dataArray= zeros((m,1024))
    labelArray= zeros((m,1))
    for i in range(m):
        returnArray=zeros((1,1024))  #每个txt文件形成的特征向量
        filename=trainfileList[i]
        fr=open('%s/%s' %(direction,filename))
        for j in range(32):
            lineStr=fr.readline()
            for k in range(32):
                returnArray[0,32*j+k]=int(lineStr[k])
        dataArray[i,:]=returnArray   #存储特征向量
    
        filename0=filename.split('.')[0]
        label=filename0.split('_')[0]
        labelArray[i]=int(label)     #存储类别
    return dataArray,labelArray

#sigmoid(inX)函数
def sigmoid(inX):
    return 1.0/(1+exp(-inX))

#用梯度下降法计算得到回归系数,alpha是步长,maxCycles是迭代步数。
def gradAscent(dataArray,labelArray,alpha,maxCycles):
    dataMat=mat(dataArray)    #size:m*n
    labelMat=mat(labelArray)      #size:m*1
    m,n=shape(dataMat)
    weigh=ones((n,1)) 
    for i in range(maxCycles):
        h=sigmoid(dataMat*weigh)
        error=labelMat-h    #size:m*1
        weigh=weigh+alpha*dataMat.transpose()*error
    return weigh

#分类函数,根据参数weigh对测试样本进行预测,同时计算错误率
def classfy(testdir,weigh):
    dataArray,labelArray=loadData(testdir)
    dataMat=mat(dataArray)
    labelMat=mat(labelArray)
    h=sigmoid(dataMat*weigh)  #size:m*1
    m=len(h)
    error=0.0
    for i in range(m):
        if int(h[i])>0.5:
            print (int(labelMat[i]),'is classfied as: 1')
            if int(labelMat[i])!=1:
                error+=1
                print ('error')
        else:
            print (int(labelMat[i]),'is classfied as: 0')
            if int(labelMat[i])!=0:
                error+=1
                print ('error')
    print ('error rate is:','%.4f' %(error/m))
"""
用loadData函数从train里面读取训练数据,接着根据这些数据,用gradAscent函数得出参数weigh,最后就可以用拟
合参数weigh来分类了。
"""                
def digitRecognition(trainDir,testDir,alpha=0.07,maxCycles=10):
    data,label=loadData(trainDir)
    weigh=gradAscent(data,label,alpha,maxCycles)
    classfy(testDir,weigh)

#运行函数    
digitRecognition('train','test',0.01,50)

当然,digitRecognition('train','test',0.01,50)  这里面的0.01 和 50都是可以调整的

最终结果如下:

数据挖掘回归问题 数据挖掘logistic回归_数组_12



整个工程文件包括源代码、训练集、测试集,可到点击下载


参考资料:

https://www.coursera.org/course/ml



http://openclassroom.stanford.edu/MainFolder/HomePage.php

https://www.coursera.org/course/ml