概述

启动ApplicationMaster进程的方式是:调用org.apache.spark.deploy.yarn.ApplicationMaster的main方法。

submitApplication

 方法流程如下:

1、verifyClusterResources():校验yarn集群在分配一个container时是否有足够的内存资源分配给executor memory和AM memory。

 

2、createContainerLaunchContext ():AM作为一个特殊的container,构建launch AM的上下文信息。最重要的是,设置launch ApplicationMaster的java进程命令。下文会展开描述。

3、createApplicationSubmissionContext():构建submit application的上下文信息。上下文信息包括:应用名、yarn队列名、launch AM的上下文信息等。

  • executor memory = spark.executor.memory + spark.executor.memoryOverhead。spark.executor.memory用于配置executor的堆内内存大小,默认1g ;用于配置executor的堆外内存大小spark.executor.memoryOverhead。
  • 在yarn-cluster模式下,AM memory = spark.driver.memory + spark.driver.memoryOverhead。spark.driver.memory用于配置driver的堆内内存大小,默认1g ;spark.driver.memoryOverhead用于配置driver的堆外内存大小,默认不分配。
  • 在其他模式下,AM memory = spark.yarn.am.memory + spark.yarn.am.memoryOverhead。spark.yarn.am.memory用于配置AM的堆内内存大小,默认512M ;spark.yarn.am.memoryOverhead用于配置AM的堆外内存大小,默认不分配。
  • //yarn集群分配一个container可分配的最大内存资源由yarn.scheduler.maximum-allocation-mb参数决定 。
//client.scala
/**
   * Submit an application running our ApplicationMaster to the ResourceManager.
   *
   * The stable Yarn API provides a convenience method (YarnClient#createApplication) for
   * creating applications and setting up the application submission context. This was not
   * available in the alpha API.
   */
  def submitApplication(): ApplicationId = {
    var appId: ApplicationId = null
    try {
      launcherBackend.connect()
      yarnClient.init(hadoopConf)
      yarnClient.start()

      logInfo("Requesting a new application from cluster with %d NodeManagers"
        .format(yarnClient.getYarnClusterMetrics.getNumNodeManagers))

      // Get a new application from our RM
      val newApp = yarnClient.createApplication()
      val newAppResponse = newApp.getNewApplicationResponse()
      appId = newAppResponse.getApplicationId()

      new CallerContext("CLIENT", sparkConf.get(APP_CALLER_CONTEXT),
        Option(appId.toString)).setCurrentContext()

      // Verify whether the cluster has enough resources for our AM
//校验集群是否有足够的内存资源分配给executor memory和AM memory
//executor memory = spark.executor.memory + spark.executor.memoryOverhead
//spark.executor.memory用于配置executor的堆内内存大小,默认1g ;用于配置executor的堆外内存大小spark.executor.memoryOverhead
//在yarn-cluster模式下,AM memory = spark.driver.memory + spark.driver.memoryOverhead
//spark.driver.memory用于配置driver的堆内内存大小,默认1g ;spark.driver.memoryOverhead用于配置driver的堆外内存大小
//在其他模式下,AM memory = spark.yarn.am.memory + spark.yarn.am.memoryOverhead
//spark.yarn.am.memory用于配置AM的堆内内存大小,默认512M ;spark.yarn.am.memoryOverhead用于配置AM的堆外内存大小
//yarn集群分配一个container可分配的最大内存资源由yarn.scheduler.maximum-allocation-mb参数决定
      verifyClusterResources(newAppResponse)

      // Set up the appropriate contexts to launch our AM
//构建launch AM的上下文信息
      val containerContext = createContainerLaunchContext(newAppResponse)
//构建submit application的上下文信息
      val appContext = createApplicationSubmissionContext(newApp, containerContext)

      // Finally, submit and monitor the application
      logInfo(s"Submitting application $appId to ResourceManager")
//调用hadoop的YarnClient,提交应用
      yarnClient.submitApplication(appContext)
      launcherBackend.setAppId(appId.toString)
      reportLauncherState(SparkAppHandle.State.SUBMITTED)

      appId
    } catch {
      case e: Throwable =>
        if (appId != null) {
          cleanupStagingDir(appId)
        }
        throw e
    }
  }

createContainerLaunchContext()方法

在ContainerLaunchContext中设置launch ApplicationMaster的java进程命令。

  • 在yarn-cluster模式下,launch ApplicationMaster的方式是:调用org.apache.spark.deploy.yarn.ApplicationMaster的main方法;其它模式下,调用org.apache.spark.deploy.yarn.ExecutorLauncher的main方法。
  • yarn-cluster模式下,可以通过spark.driver.extraJavaOptions增加java进程的启动参数。spark.yarn.am.extraJavaOptions参数无效。
/**
   * Set up a ContainerLaunchContext to launch our ApplicationMaster container.
   * This sets up the launch environment, java options, and the command for launching the AM.
   */
  private def createContainerLaunchContext(newAppResponse: GetNewApplicationResponse)
    : ContainerLaunchContext = {
    logInfo("Setting up container launch context for our AM")
    val appId = newAppResponse.getApplicationId
    val appStagingDirPath = new Path(appStagingBaseDir, getAppStagingDir(appId))
    val pySparkArchives =
      if (sparkConf.get(IS_PYTHON_APP)) {
        findPySparkArchives()
      } else {
        Nil
      }

    val launchEnv = setupLaunchEnv(appStagingDirPath, pySparkArchives)
    val localResources = prepareLocalResources(appStagingDirPath, pySparkArchives)

    val amContainer = Records.newRecord(classOf[ContainerLaunchContext])
    amContainer.setLocalResources(localResources.asJava)
    amContainer.setEnvironment(launchEnv.asJava)

    val javaOpts = ListBuffer[String]()

    // Set the environment variable through a command prefix
    // to append to the existing value of the variable
    var prefixEnv: Option[String] = None

    // Add Xmx for AM memory
    javaOpts += "-Xmx" + amMemory + "m"

    val tmpDir = new Path(Environment.PWD.$$(), YarnConfiguration.DEFAULT_CONTAINER_TEMP_DIR)
    javaOpts += "-Djava.io.tmpdir=" + tmpDir

    // TODO: Remove once cpuset version is pushed out.
    // The context is, default gc for server class machines ends up using all cores to do gc -
    // hence if there are multiple containers in same node, Spark GC affects all other containers'
    // performance (which can be that of other Spark containers)
    // Instead of using this, rely on cpusets by YARN to enforce "proper" Spark behavior in
    // multi-tenant environments. Not sure how default Java GC behaves if it is limited to subset
    // of cores on a node.
    val useConcurrentAndIncrementalGC = launchEnv.get("SPARK_USE_CONC_INCR_GC").exists(_.toBoolean)
    if (useConcurrentAndIncrementalGC) {
      // In our expts, using (default) throughput collector has severe perf ramifications in
      // multi-tenant machines
      javaOpts += "-XX:+UseConcMarkSweepGC"
      javaOpts += "-XX:MaxTenuringThreshold=31"
      javaOpts += "-XX:SurvivorRatio=8"
      javaOpts += "-XX:+CMSIncrementalMode"
      javaOpts += "-XX:+CMSIncrementalPacing"
      javaOpts += "-XX:CMSIncrementalDutyCycleMin=0"
      javaOpts += "-XX:CMSIncrementalDutyCycle=10"
    }

    // Include driver-specific java options if we are launching a driver
    if (isClusterMode) {
      sparkConf.get(DRIVER_JAVA_OPTIONS).foreach { opts =>
        javaOpts ++= Utils.splitCommandString(opts)
          .map(Utils.substituteAppId(_, appId.toString))
          .map(YarnSparkHadoopUtil.escapeForShell)
      }
      val libraryPaths = Seq(sparkConf.get(DRIVER_LIBRARY_PATH),
        sys.props.get("spark.driver.libraryPath")).flatten
      if (libraryPaths.nonEmpty) {
        prefixEnv = Some(createLibraryPathPrefix(libraryPaths.mkString(File.pathSeparator),
          sparkConf))
      }
      if (sparkConf.get(AM_JAVA_OPTIONS).isDefined) {
        logWarning(s"${AM_JAVA_OPTIONS.key} will not take effect in cluster mode")
      }
    } else {
      // Validate and include yarn am specific java options in yarn-client mode.
      sparkConf.get(AM_JAVA_OPTIONS).foreach { opts =>
        if (opts.contains("-Dspark")) {
          val msg = s"${AM_JAVA_OPTIONS.key} is not allowed to set Spark options (was '$opts')."
          throw new SparkException(msg)
        }
        if (opts.contains("-Xmx")) {
          val msg = s"${AM_JAVA_OPTIONS.key} is not allowed to specify max heap memory settings " +
            s"(was '$opts'). Use spark.yarn.am.memory instead."
          throw new SparkException(msg)
        }
        javaOpts ++= Utils.splitCommandString(opts)
          .map(Utils.substituteAppId(_, appId.toString))
          .map(YarnSparkHadoopUtil.escapeForShell)
      }
      sparkConf.get(AM_LIBRARY_PATH).foreach { paths =>
        prefixEnv = Some(createLibraryPathPrefix(paths, sparkConf))
      }
    }

    // For log4j configuration to reference
    javaOpts += ("-Dspark.yarn.app.container.log.dir=" + ApplicationConstants.LOG_DIR_EXPANSION_VAR)

    val userClass =
      if (isClusterMode) {
        Seq("--class", YarnSparkHadoopUtil.escapeForShell(args.userClass))
      } else {
        Nil
      }
    val userJar =
      if (args.userJar != null) {
        Seq("--jar", args.userJar)
      } else {
        Nil
      }
    val primaryPyFile =
      if (isClusterMode && args.primaryPyFile != null) {
        Seq("--primary-py-file", new Path(args.primaryPyFile).getName())
      } else {
        Nil
      }
    val primaryRFile =
      if (args.primaryRFile != null) {
        Seq("--primary-r-file", args.primaryRFile)
      } else {
        Nil
      }
    val amClass =
      if (isClusterMode) {
        Utils.classForName("org.apache.spark.deploy.yarn.ApplicationMaster").getName
      } else {
        Utils.classForName("org.apache.spark.deploy.yarn.ExecutorLauncher").getName
      }
    if (args.primaryRFile != null && args.primaryRFile.endsWith(".R")) {
      args.userArgs = ArrayBuffer(args.primaryRFile) ++ args.userArgs
    }
    val userArgs = args.userArgs.flatMap { arg =>
      Seq("--arg", YarnSparkHadoopUtil.escapeForShell(arg))
    }
    val amArgs =
      Seq(amClass) ++ userClass ++ userJar ++ primaryPyFile ++ primaryRFile ++ userArgs ++
      Seq("--properties-file", buildPath(Environment.PWD.$$(), LOCALIZED_CONF_DIR, SPARK_CONF_FILE))

    // Command for the ApplicationMaster
    val commands = prefixEnv ++
      Seq(Environment.JAVA_HOME.$$() + "/bin/java", "-server") ++
      javaOpts ++ amArgs ++
      Seq(
        "1>", ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stdout",
        "2>", ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stderr")

    // TODO: it would be nicer to just make sure there are no null commands here
    val printableCommands = commands.map(s => if (s == null) "null" else s).toList
    amContainer.setCommands(printableCommands.asJava)

    logDebug("===============================================================================")
    logDebug("YARN AM launch context:")
    logDebug(s"    user class: ${Option(args.userClass).getOrElse("N/A")}")
    logDebug("    env:")
    if (log.isDebugEnabled) {
      Utils.redact(sparkConf, launchEnv.toSeq).foreach { case (k, v) =>
        logDebug(s"        $k -> $v")
      }
    }
    logDebug("    resources:")
    localResources.foreach { case (k, v) => logDebug(s"        $k -> $v")}
    logDebug("    command:")
    logDebug(s"        ${printableCommands.mkString(" ")}")
    logDebug("===============================================================================")

    // send the acl settings into YARN to control who has access via YARN interfaces
    val securityManager = new SecurityManager(sparkConf)
    amContainer.setApplicationACLs(
      YarnSparkHadoopUtil.getApplicationAclsForYarn(securityManager).asJava)
    setupSecurityToken(amContainer)
    amContainer
  }

run ApplicationMaster

在yarn-cluster模式下,调用runDriver()方法;

否则,调用runExectorLauncher()方法

def main(args: Array[String]): Unit = {
    SignalUtils.registerLogger(log)
    val amArgs = new ApplicationMasterArguments(args)
    master = new ApplicationMaster(amArgs)
    System.exit(master.run())
  }

 final def run(): Int = {
    doAsUser {
      runImpl()
    }
    exitCode
  }


 private def runImpl(): Unit = {
    try {
      val appAttemptId = client.getAttemptId()

      var attemptID: Option[String] = None

      if (isClusterMode) {
        // Set the web ui port to be ephemeral for yarn so we don't conflict with
        // other spark processes running on the same box
        System.setProperty("spark.ui.port", "0")

        // Set the master and deploy mode property to match the requested mode.
        System.setProperty("spark.master", "yarn")
        System.setProperty("spark.submit.deployMode", "cluster")

        // Set this internal configuration if it is running on cluster mode, this
        // configuration will be checked in SparkContext to avoid misuse of yarn cluster mode.
        System.setProperty("spark.yarn.app.id", appAttemptId.getApplicationId().toString())

        attemptID = Option(appAttemptId.getAttemptId.toString)
      }

      new CallerContext(
        "APPMASTER", sparkConf.get(APP_CALLER_CONTEXT),
        Option(appAttemptId.getApplicationId.toString), attemptID).setCurrentContext()

      logInfo("ApplicationAttemptId: " + appAttemptId)

      // This shutdown hook should run *after* the SparkContext is shut down.
      val priority = ShutdownHookManager.SPARK_CONTEXT_SHUTDOWN_PRIORITY - 1
      ShutdownHookManager.addShutdownHook(priority) { () =>
        val maxAppAttempts = client.getMaxRegAttempts(sparkConf, yarnConf)
        val isLastAttempt = client.getAttemptId().getAttemptId() >= maxAppAttempts

        if (!finished) {
          // The default state of ApplicationMaster is failed if it is invoked by shut down hook.
          // This behavior is different compared to 1.x version.
          // If user application is exited ahead of time by calling System.exit(N), here mark
          // this application as failed with EXIT_EARLY. For a good shutdown, user shouldn't call
          // System.exit(0) to terminate the application.
          finish(finalStatus,
            ApplicationMaster.EXIT_EARLY,
            "Shutdown hook called before final status was reported.")
        }

        if (!unregistered) {
          // we only want to unregister if we don't want the RM to retry
          if (finalStatus == FinalApplicationStatus.SUCCEEDED || isLastAttempt) {
            unregister(finalStatus, finalMsg)
            cleanupStagingDir()
          }
        }
      }

      if (isClusterMode) {
        runDriver()
      } else {
        runExecutorLauncher()
      }
    } catch {
      case e: Exception =>
        // catch everything else if not specifically handled
        logError("Uncaught exception: ", e)
        finish(FinalApplicationStatus.FAILED,
          ApplicationMaster.EXIT_UNCAUGHT_EXCEPTION,
          "Uncaught exception: " + StringUtils.stringifyException(e))
    } finally {
      try {
        metricsSystem.foreach { ms =>
          ms.report()
          ms.stop()
        }
      } catch {
        case e: Exception =>
          logWarning("Exception during stopping of the metric system: ", e)
      }
    }
  }

run Driver

1、注册ApplicationMaster,此处不再展开细述,可看 spark-yarn源码分析之registerApplicationMaster事件流程

2、申请container资源,并在NM端start Containers。

AM申请container资源此处不再展开细述,可看spark-yarn源码分析之AM申请container事件流程

AM在NM端start Containers此处不再展开细述,可看

private def runDriver(): Unit = {
    addAmIpFilter(None)
    userClassThread = startUserApplication()

    // This a bit hacky, but we need to wait until the spark.driver.port property has
    // been set by the Thread executing the user class.
    logInfo("Waiting for spark context initialization...")
    val totalWaitTime = sparkConf.get(AM_MAX_WAIT_TIME)
    try {
      val sc = ThreadUtils.awaitResult(sparkContextPromise.future,
        Duration(totalWaitTime, TimeUnit.MILLISECONDS))
      if (sc != null) {
        rpcEnv = sc.env.rpcEnv

        val userConf = sc.getConf
        val host = userConf.get("spark.driver.host")
        val port = userConf.get("spark.driver.port").toInt
//注册ApplicationMaster
        registerAM(host, port, userConf, sc.ui.map(_.webUrl))

        val driverRef = rpcEnv.setupEndpointRef(
          RpcAddress(host, port),
          YarnSchedulerBackend.ENDPOINT_NAME)
//向RM申请container资源,获取到资源后在NM端start containers
        createAllocator(driverRef, userConf)
      } else {
        // Sanity check; should never happen in normal operation, since sc should only be null
        // if the user app did not create a SparkContext.
        throw new IllegalStateException("User did not initialize spark context!")
      }
      resumeDriver()
      userClassThread.join()
    } catch {
      case e: SparkException if e.getCause().isInstanceOf[TimeoutException] =>
        logError(
          s"SparkContext did not initialize after waiting for $totalWaitTime ms. " +
           "Please check earlier log output for errors. Failing the application.")
        finish(FinalApplicationStatus.FAILED,
          ApplicationMaster.EXIT_SC_NOT_INITED,
          "Timed out waiting for SparkContext.")
    } finally {
      resumeDriver()
    }
  }