Jdk8,Stream流collect全部api:让集合操作如此简单(数据转化,分组GroupBy,统计和复杂操作)

  • 前提
  • 需要了解@FunctionalInterface:函数式接口,很多方法参数都是函数式接口,需要了解的可以看下这篇文章
  • 数据转换
  • 1:转List
  • 1.基础转化
  • 2.List嵌套转List(List<List<Object>>转List<Object>:借助flatMap)
  • 2:转Set
  • 3:转Collection
  • 4:转Map
  • 1.基础转化
  • 2.处理key值重复
  • 3.指定Map类型
  • 4.并发转化
  • 数据分组
  • 1:普通分组
  • 1.基础分组
  • 2.分组后,操作组内数据
  • 例子1
  • 例子2
  • 3.指定Map类型
  • 4.并发分组
  • 2:Boolean分组
  • 1.基础分组
  • 2.分组后,操作组内数据
  • 数据统计
  • 1:统计数量
  • 2:统计和
  • 3:统计平均数
  • 4:统计最小值
  • 5:统计最大值
  • 6:组合统计
  • 其他操作
  • 1:处理集合里的每个元素,然后进行二次操作
  • 2:获取第一次操作结果,进行第二次操作
  • 3:将集合数据进行字符串拼接
  • 1.无拼接符拼接
  • 2.根据拼接符进行拼接
  • 3.根据拼接符进行拼接,并对开始前和结束后拼接自定义的字符串
  • 4:聚合操作
  • 1.基础聚合
  • 2.指定初始值聚合
  • 3.处理集合每个元素再聚合


前提

需要了解@FunctionalInterface:函数式接口,很多方法参数都是函数式接口,需要了解的可以看下这篇文章

Jdk8,@FunctionalInterface:函数式接口,学会使用lamda表达式,通俗易懂

比如转化Map的toMap方法

java 使用jedisCluster 操作stream jdk stream collect_List


比如对集合分组的groupingBy方法

java 使用jedisCluster 操作stream jdk stream collect_List_02


比如获取最大值的maxBy方法

java 使用jedisCluster 操作stream jdk stream collect_System_03

数据转换

1:转List

1.基础转化

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void toList() {
        List<String> collect = list.stream().map(t -> t + "*").collect(Collectors.toList());
        System.out.println("collect = " + collect);
    }

输出:对集合每个元素拼接"*",然后将拼接结果转为List

collect = [5*, 2*, 4*, 1*, 6*, 3*, 10*, 8*, 7*, 9*]

2.List嵌套转List(List<List>转List:借助flatMap)

@Test
    public void nestList() {
        List<List<Integer>> nestList = Arrays.asList(Arrays.asList(1, 2), Arrays.asList(3, 4), Collections.emptyList(), Arrays.asList(5, 6));
        System.out.println("nestList = " + nestList);
        List<Integer> normalList = nestList.stream().flatMap(Collection::stream).collect(Collectors.toList());
        System.out.println("normalList = " + normalList);
    }

输出:可以看到List里面就算嵌套一个空的list:[],也是可以正常转化

nestList = [[1, 2], [3, 4], [], [5, 6]]
normalList = [1, 2, 3, 4, 5, 6]

2:转Set

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void toSet() {
        Set<Integer> collect = list.stream().collect(Collectors.toSet());
        System.out.println("collect = " + collect);
    }

输出

collect = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

3:转Collection

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void toCollection() {
        Set<Integer> collect = list.stream().collect(Collectors.toCollection(TreeSet::new));
        System.out.println("collect.getClass().getName() = " + collect.getClass().getName());
    }

输出:将List转成了TreeSet

collect.getClass().getName() = java.util.TreeSet

4:转Map

1.基础转化

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void toMap() {
        Map<Integer, Integer> collect = list.stream().collect(Collectors.toMap(Function.identity(), v -> v * 10));
        System.out.println("collect = " + collect);
    }

这里使用到了Function.identity(),其实对应的就是我们平时的写法:t -> t,意思就是传入对象t,然后把这个传入的对象直接返回

/**
     * Returns a function that always returns its input argument.
     *
     * @param <T> the type of the input and output objects to the function
     * @return a function that always returns its input argument
     */
    static <T> Function<T, T> identity() {
        return t -> t;
    }

输出:key为对象自身,value为对象自身 * 10

collect = {1=10, 2=20, 3=30, 4=40, 5=50, 6=60, 7=70, 8=80, 9=90, 10=100}

2.处理key值重复

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9, 9);

    @Test
    public void toMapWithMergeFunction() {
        Map<Integer, Integer> collect = list.stream().collect(Collectors.toMap(Function.identity(), v -> v * 10, (first, second) -> second));
        System.out.println("collect = " + collect);
    }

这里使用到了mergeFunction,也就是:(first, second) -> second,意思就是key值重复的话,使用重复的这个做为key

public static <T, K, U>
    Collector<T, ?, Map<K,U>> toMap(Function<? super T, ? extends K> keyMapper,
                                    Function<? super T, ? extends U> valueMapper,
                                    BinaryOperator<U> mergeFunction) {
        return toMap(keyMapper, valueMapper, mergeFunction, HashMap::new);
    }

如果key值重复不使用这个mergeFunction对象,代码会报错!!!

java 使用jedisCluster 操作stream jdk stream collect_开发语言_04

输出:key为对象自身,value为对象自身 * 10

collect = {1=10, 2=20, 3=30, 4=40, 5=50, 6=60, 7=70, 8=80, 9=90, 10=100}

3.指定Map类型

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void toMapWithMapSupplier() {
        Map<Integer, Integer> collect = list.stream().collect(Collectors.toMap(Function.identity(), v -> v * 10, (first, second) -> second, LinkedHashMap::new));
        System.out.println("collect.getClass().getName() = " + collect.getClass().getName());
    }

这里使用到了mapSupplier,也就是:LinkedHashMap::new,意思就是使用LinkedHashMap类型的Map

public static <T, K, U>
    Collector<T, ?, Map<K,U>> toMap(Function<? super T, ? extends K> keyMapper,
                                    Function<? super T, ? extends U> valueMapper,
                                    BinaryOperator<U> mergeFunction) {
        return toMap(keyMapper, valueMapper, mergeFunction, HashMap::new);
    }

输出:

collect.getClass().getName() = java.util.LinkedHashMap

4.并发转化

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void toConcurrentMapWithMergeFunction() {
        Map<Integer, Integer> collect = list.parallelStream().collect(Collectors.toConcurrentMap(Function.identity(), v -> {
            System.out.println("Thread.currentThread().getName() = " + Thread.currentThread().getName());
            return v * 10;
        }, (first, second) -> second));
        System.out.println("collect = " + collect);
        System.out.println("collect.getClass().getName() = " + collect.getClass().getName());
    }

    @Test
    public void toConcurrentMapWithMergeFunction() {
        Map<Integer, Integer> collect = list.parallelStream().collect(Collectors.toConcurrentMap(Function.identity(), v -> v * 10, (first, second) -> second));
        System.out.println("collect = " + collect);
        System.out.println("collect.getClass().getName() = " + collect.getClass().getName());
    }

输出:这里使用到了parallelStream,也就是并发流,默认使用系统自带的ForkJoinPool线程池进行多线程处理,可以看到主线程和线程池线程都参与了处理,使用了线程线程安全的ConcurrentHashMap

Thread.currentThread().getName() = ForkJoinPool.commonPool-worker-4
Thread.currentThread().getName() = ForkJoinPool.commonPool-worker-2
Thread.currentThread().getName() = ForkJoinPool.commonPool-worker-3
Thread.currentThread().getName() = ForkJoinPool.commonPool-worker-5
Thread.currentThread().getName() = ForkJoinPool.commonPool-worker-1
Thread.currentThread().getName() = main
Thread.currentThread().getName() = ForkJoinPool.commonPool-worker-3
Thread.currentThread().getName() = ForkJoinPool.commonPool-worker-6
Thread.currentThread().getName() = ForkJoinPool.commonPool-worker-2
Thread.currentThread().getName() = ForkJoinPool.commonPool-worker-4
collect = {1=10, 2=20, 3=30, 4=40, 5=50, 6=60, 7=70, 8=80, 9=90, 10=100}
collect.getClass().getName() = java.util.concurrent.ConcurrentHashMap

数据分组

1:普通分组

1.基础分组

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void groupingBy() {
        Map<Integer, List<Integer>> collect = list.stream().collect(Collectors.groupingBy(k -> k % 2));
        System.out.println("collect = " + collect);
    }

输出:根据除以2的余数进行分组,共两组,key为0和1

collect = {0=[2, 4, 6, 10, 8], 1=[5, 1, 3, 7, 9]}

2.分组后,操作组内数据

例子1
private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void groupingByWithDownstream() {
        Map<Integer, Map<Integer, List<Integer>>> collect = list.stream().collect(Collectors.groupingBy(k -> k % 2, Collectors.groupingBy(k -> k % 3)));
        System.out.println("collect = " + collect);
    }

这里使用到了downstream,也就是:Collectors.groupingBy(k -> k % 3),意思就是根据除以3的余数进行分组

public static <T, K, A, D>
    Collector<T, ?, Map<K, D>> groupingBy(Function<? super T, ? extends K> classifier,
                                          Collector<? super T, A, D> downstream) {
        return groupingBy(classifier, HashMap::new, downstream);
    }

输出:根据除以2的余数进行分组,共两组,key为0和1。分完组后再对组内数据进行二次分组,二次分组根据除以3的余数进行分组,共三组,key为0,1和2

collect = {0={0=[6], 1=[4, 10], 2=[2, 8]}, 1={0=[3, 9], 1=[1, 7], 2=[5]}}
例子2
private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void groupingByWithDownstream2() {
        Map<Integer, List<Integer>> collect = list.stream().collect(Collectors.groupingBy(k -> k % 2, Collectors.mapping(t -> t + 10, Collectors.toList())));
        System.out.println("collect = " + collect);
    }

输出:根据除以2的余数进行分组,共两组,key为0和1。分完组后再对组内每个数据分别加上10

collect = {0=[12, 14, 16, 20, 18], 1=[15, 11, 13, 17, 19]}

3.指定Map类型

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void groupingByWithMapFactory() {
        Map<Integer, Map<Integer, List<Integer>>> collect = list.stream().collect(Collectors.groupingBy(k -> k % 2, LinkedHashMap::new, Collectors.groupingBy(k -> k % 3)));
        System.out.println("collect.getClass().getName() = " + collect.getClass().getName());
    }

这里使用到了mapFactory,也就是:LinkedHashMap::new,意思就是使用LinkedHashMap类型的Map

public static <T, K, D, A, M extends Map<K, D>>
    Collector<T, ?, M> groupingBy(Function<? super T, ? extends K> classifier,
                                  Supplier<M> mapFactory,
                                  Collector<? super T, A, D> downstream)

输出:

collect.getClass().getName() = java.util.LinkedHashMap

4.并发分组

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void groupingByConcurrent() {
        Map<Integer, List<Integer>> collect = list.parallelStream().collect(Collectors.groupingByConcurrent(k -> {
            System.out.println("Thread.currentThread().getName() = " + Thread.currentThread().getName());
            return k % 2;
        }));
        System.out.println("collect = " + collect);
        System.out.println("collect.getClass().getName() = " + collect.getClass().getName());
    }

    @Test
    public void groupingByConcurrentWithDownstream() {
        Map<Integer, Map<Integer, List<Integer>>> collect = list.parallelStream().collect(Collectors.groupingByConcurrent(k -> k % 2, Collectors.groupingBy(k -> k % 3)));
        System.out.println("collect = " + collect);
        System.out.println("collect.getClass().getName() = " + collect.getClass().getName());
    }

输出:这里使用到了parallelStream,也就是并发流,默认使用系统自带的ForkJoinPool线程池进行多线程处理,可以看到主线程和线程池线程都参与了处理,使用了线程线程安全的ConcurrentHashMap

Thread.currentThread().getName() = ForkJoinPool.commonPool-worker-4
Thread.currentThread().getName() = ForkJoinPool.commonPool-worker-6
Thread.currentThread().getName() = ForkJoinPool.commonPool-worker-3
Thread.currentThread().getName() = ForkJoinPool.commonPool-worker-4
Thread.currentThread().getName() = ForkJoinPool.commonPool-worker-4
Thread.currentThread().getName() = ForkJoinPool.commonPool-worker-2
Thread.currentThread().getName() = main
Thread.currentThread().getName() = ForkJoinPool.commonPool-worker-1
Thread.currentThread().getName() = ForkJoinPool.commonPool-worker-1
Thread.currentThread().getName() = ForkJoinPool.commonPool-worker-5
collect = {0=[8, 2, 10, 4, 6], 1=[9, 3, 7, 5, 1]}
collect.getClass().getName() = java.util.concurrent.ConcurrentHashMap

2:Boolean分组

1.基础分组

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void partitioningBy() {
        Map<Boolean, List<Integer>> collect = list.stream().collect(Collectors.partitioningBy(k -> k % 2 == 0));
        System.out.println("collect = " + collect);
    }

输出:根据除以2的余数是否等于0进行分组,共两组,key为true和false

collect = {false=[5, 1, 3, 7, 9], true=[2, 4, 6, 10, 8]}

2.分组后,操作组内数据

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void partitioningByWithDownstream() {
        Map<Boolean, Map<Boolean, List<Integer>>> collect = list.stream().collect(Collectors.partitioningBy(k -> k % 2 == 0, Collectors.partitioningBy(k -> k % 3 == 0)));
        System.out.println("collect = " + collect);
    }

这里使用到了downstream,也就是:Collectors.groupingBy(k -> k % 3 == 0),意思就是根据除以3的余数是否等于0进行分组

public static <T, D, A>
    Collector<T, ?, Map<Boolean, D>> partitioningBy(Predicate<? super T> predicate,
                                                    Collector<? super T, A, D> downstream)

输出:根据除以2的余数是否等于0进行分组,共两组,key为true和false。分完组后再对组内数据进行二次分组,二次分组根据除以3的余数是否等于0进行分组,共两组,key为true和false

collect = {false={false=[5, 1, 7], true=[3, 9]}, true={false=[2, 4, 10, 8], true=[6]}}

数据统计

1:统计数量

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void counting() {
        Long collect = list.stream().collect(Collectors.counting());
        System.out.println("collect = " + collect);
    }

输出

collect = 10

2:统计和

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void summingInt() {
        Integer collect = list.stream().collect(Collectors.summingInt(t -> t));
        System.out.println("collect = " + collect);
    }

    @Test
    public void summingLong() {
        Long collect = list.stream().collect(Collectors.summingLong(t -> t));
        System.out.println("collect = " + collect);
    }

    @Test
    public void summingDouble() {
        Double collect = list.stream().collect(Collectors.summingDouble(t -> t));
        System.out.println("collect = " + collect);
    }

输出:三个方法都是统计和,区别只在于统计结果的数据类型,分别为 Integer ,Long ,和Double

collect = 55
collect = 55
collect = 55.0

3:统计平均数

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void averagingInt() {
        Double collect = list.stream().collect(Collectors.averagingInt(t -> t));
        System.out.println("collect = " + collect);
    }

    @Test
    public void averagingLong() {
        Double collect = list.stream().collect(Collectors.averagingLong(t -> t));
        System.out.println("collect = " + collect);
    }

    @Test
    public void averagingDouble() {
        Double collect = list.stream().collect(Collectors.averagingDouble(t -> t));
        System.out.println("collect = " + collect);
    }

输出:三个方法都是统计平均数,区别只在于统计结果的数据类型,分别为 Integer ,Long ,和Double

collect = 5.5
collect = 5.5
collect = 5.5

4:统计最小值

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void minBy() {
        Optional<Integer> collect = list.stream().collect(Collectors.minBy(Integer::compareTo));
        System.out.println("collect = " + collect);
    }

输出

collect = Optional[1]

5:统计最大值

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

   @Test
    public void maxBy() {
        Optional<Integer> collect = list.stream().collect(Collectors.maxBy(Integer::compareTo));
        System.out.println("collect = " + collect);
    }

输出

collect = Optional[10]

6:组合统计

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void summarizingInt() {
        IntSummaryStatistics collect = list.stream().collect(Collectors.summarizingInt(t -> t));
        System.out.println("collect = " + collect);
    }

    @Test
    public void summarizingLong() {
        LongSummaryStatistics collect = list.stream().collect(Collectors.summarizingLong(t -> t));
        System.out.println("collect = " + collect);
    }

    @Test
    public void summarizingDouble() {
        DoubleSummaryStatistics collect = list.stream().collect(Collectors.summarizingDouble(t -> t));
        System.out.println("collect = " + collect);
    }

输出:统计出数量,和,最小值,平均数,最大值

collect = IntSummaryStatistics{count=10, sum=55, min=1, average=5.500000, max=10}
collect = LongSummaryStatistics{count=10, sum=55, min=1, average=5.500000, max=10}
collect = DoubleSummaryStatistics{count=10, sum=55.000000, min=1.000000, average=5.500000, max=10.000000}

其他操作

1:处理集合里的每个元素,然后进行二次操作

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void mapping() {
        Map<Integer, List<Integer>> collect = list.stream().collect(Collectors.mapping(t -> t * t, Collectors.groupingBy(k -> k % 2)));
        System.out.println("collect = " + collect);
    }

输出:这里先对集合的每个元素进行平方操作,然后对平方的结果除以2的余数进行分组

collect = {0=[4, 16, 36, 100, 64], 1=[25, 1, 9, 49, 81]}

2:获取第一次操作结果,进行第二次操作

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void collectingAndThen() {
        Map<Integer, List<Integer>> collect = list.stream().collect(Collectors.collectingAndThen(Collectors.groupingBy(k -> k % 2), d -> {
            Map<Integer, List<Integer>> map = new HashMap<>((int) (d.size() / 0.75F));
            d.forEach((key, value) -> map.put(key + 10, value.stream().map(t -> t * 10).collect(Collectors.toList())));
            return map;
        }));
        System.out.println("collect = " + collect);
    }

输出:这里第一次操作是根据除以2的余数进行分组,第二次操作对分组后的结果进行遍历,对key + 10 ,对value * 10,组成一个新的map并返回

collect = {10=[20, 40, 60, 100, 80], 11=[50, 10, 30, 70, 90]}

3:将集合数据进行字符串拼接

1.无拼接符拼接

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void joining() {
        String collect = list.stream().map(Objects::toString).collect(Collectors.joining());
        System.out.println("collect = " + collect);
    }

输出

collect = 52416310879

2.根据拼接符进行拼接

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void joiningWithDelimiter() {
        String collect = list.stream().map(Objects::toString).collect(Collectors.joining(","));
        System.out.println("collect = " + collect);
    }

输出

collect = 5,2,4,1,6,3,10,8,7,9

3.根据拼接符进行拼接,并对开始前和结束后拼接自定义的字符串

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void joiningWithStartAndEnd() {
        String collect = list.stream().map(Objects::toString).collect(Collectors.joining(",", "[", "]"));
        System.out.println("collect = " + collect);
    }

输出

collect = [5,2,4,1,6,3,10,8,7,9]

4:聚合操作

1.基础聚合

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

   @Test
    public void reducing() {
        Optional<Integer> collect = list.stream().collect(Collectors.reducing((t, u) -> {
            System.out.println("t = " + t);
            System.out.println("u = " + u);
            System.out.println("--------");
            return t - u;
        }));
        System.out.println("collect = " + collect);
    }

输出:对集合元素进行累减,从第二个参数t可以看出, t为上一次操作的结果。在这里第一个t = 5,u = 2,t - u = 3赋值到第二个t,所以二个t = 3

t = 5
u = 2
--------
t = 3
u = 4
--------
t = -1
u = 1
--------
t = -2
u = 6
--------
t = -8
u = 3
--------
t = -11
u = 10
--------
t = -21
u = 8
--------
t = -29
u = 7
--------
t = -36
u = 9
--------
collect = Optional[-45]

2.指定初始值聚合

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void reducingWithIdentity() {
        Integer collect = list.stream().collect(Collectors.reducing(100, (t, u) -> {
            System.out.println("t = " + t);
            System.out.println("u = " + u);
            System.out.println("--------");
            return t - u;
        }));
        System.out.println("collect = " + collect);
    }

输出:第一个参数t,跟上面例子对比,发现不是5,而是指定的初始值100

t = 100
u = 5
--------
t = 95
u = 2
--------
t = 93
u = 4
--------
t = 89
u = 1
--------
t = 88
u = 6
--------
t = 82
u = 3
--------
t = 79
u = 10
--------
t = 69
u = 8
--------
t = 61
u = 7
--------
t = 54
u = 9
--------
collect = 45

3.处理集合每个元素再聚合

private List<Integer> list = Arrays.asList(5, 2, 4, 1, 6, 3, 10, 8, 7, 9);

    @Test
    public void reducingWithMapper() {
        Integer collect = list.stream().collect(Collectors.reducing(100, t -> t + 10, (t, u) -> {
            System.out.println("t = " + t);
            System.out.println("u = " + u);
            System.out.println("--------");
            return t - u;
        }));
        System.out.println("collect = " + collect);
    }

输出:从参数可以看到,这里执行了 t -> t + 10 操作,对集合的每个元素进行自增10

t = 100
u = 15
--------
t = 85
u = 12
--------
t = 73
u = 14
--------
t = 59
u = 11
--------
t = 48
u = 16
--------
t = 32
u = 13
--------
t = 19
u = 20
--------
t = -1
u = 18
--------
t = -19
u = 17
--------
t = -36
u = 19
--------
collect = -55