在Go语言中接口(interface)是一种类型,一种抽象的类型。

interface是一组method的集合,是duck-type programming的一种体现。接口做的事情就像是定义一个协议(规则),只要一台机器有洗衣服和甩干的功能,我就称它为洗衣机。不关心属性(数据),只关心行为(方法)。

请牢记接口(interface)是一种类型。

接口的定义

  • 接口名:使用type将接口定义为自定义的类型名。Go语言的接口在命名时,一般会在单词后面添加er,如有写操作的接口叫Writer,有字符串功能的接口叫Stringer等。接口名最好要能突出该接口的类型含义。
  • 方法名:当方法名首字母是大写且这个接口类型名首字母也是大写时,这个方法可以被接口所在的包(package)之外的代码访问。
  • 参数列表、返回值列表:参数列表和返回值列表中的参数变量名可以省略。

值接收者和指针接收者实现接口的区别

type Mover interface {
	move()
}

type dog struct {}

func (d dog) move() {
	fmt.Println("狗会动")
}

func main() {
	var x Mover
	var wangcai = dog{} // 旺财是dog类型
	x = wangcai         // x可以接收dog类型
	var fugui = &dog{}  // 富贵是*dog类型
	x = fugui           // x可以接收*dog类型
	x.move()
}
------------------------------------------------------
func (d *dog) move() {
	fmt.Println("狗会动")
}
func main() {
	var x Mover
	var wangcai = dog{} // 旺财是dog类型
	x = wangcai         // x不可以接收dog类型
	var fugui = &dog{}  // 富贵是*dog类型
	x = fugui           // x可以接收*dog类型
}

使用值接收者实现接口之后,不管是dog结构体还是结构体指针*dog类型的变量都可以赋值给该接口变量。因为Go语言中有对指针类型变量求值的语法糖,dog指针fuigui内部会自动求值*fuigui

使用指针接收者实现接口之后,此时实现Mover接口的是*dog类型,所以不能给x传入dog类型的wangcai,此时x只能存储*dog类型的值。

下面的两段代码是为了举例说明:

type I interface {
	Get() int
	Set(int)
}

type S struct {
	Age int
}

func(s S) Get()int {
	return s.Age
}

func(s *S) Set(age int) {
	s.Age = age
}

func main() {
	s1 := S{}
	s2 := &S{}
	var i1 I = s1 // 错误, S结构体没有实现 I接口,S结构体指针却实现了 I接口 
	var i2 I = s2
}

 

以下代码不可以通过编译, 值类型不能赋值给指针接口

type People interface {
	Speak(string) string
}

type Student struct{}

func (stu *Student) Speak(think string) (talk string) {
	if think == "sb" {
		talk = "你是个大帅比"
	} else {
		talk = "您好"
	}
	return
}

func main() {
	var peo People = Student{} // 值类型不能赋值给指针接口
	think := "bitch"
	fmt.Println(peo.Speak(think))

类型与接口的关系

  • 一个类型实现多个接口

一个类型可以同时实现多个接口,而接口间彼此独立,不知道对方的实现。 例如,狗可以叫,也可以动。我们就分别定义Sayer接口和Mover接口,dog既可以实现Sayer接口,也可以实现Mover接口。

 

// Sayer 接口
type Sayer interface {
	say()
}

// Mover 接口
type Mover interface {
	move()
}

type dog struct {
	name string
}

// 实现Sayer接口
func (d dog) say() {
	fmt.Printf("%s会叫汪汪汪\n", d.name)
}

// 实现Mover接口
func (d dog) move() {
	fmt.Printf("%s会动\n", d.name)
}

func main() {
	var x Sayer
	var y Mover

	var a = dog{name: "旺财"}
	x = a
	y = a
	x.say()
	y.move()
}
  • 多个类型实现同一接口

Go语言中不同的类型还可以实现同一接口 首先我们定义一个Mover接口,它要求必须由一个move方法,例如狗可以动,汽车也可以动,可以使用如下代码实现这个关系:

这个时候我们在代码中就可以把狗和汽车当成一个会动的物体来处理了,不再需要关注它们具体是什么,只需要调用它们的move方法就可以了。

// Mover 接口
type Mover interface {
	move()
}

type dog struct {
	name string
}

type car struct {
	brand string
}

// dog类型实现Mover接口
func (d dog) move() {
	fmt.Printf("%s会跑\n", d.name)
}

// car类型实现Mover接口
func (c car) move() {
	fmt.Printf("%s速度70迈\n", c.brand)
}

func main() {
	var x Mover
	var a = dog{name: "旺财"}
	var b = car{brand: "保时捷"}
	x = a
	x.move()
	x = b
	x.move()
}

//output:
//旺财会跑
//保时捷速度70迈

并且一个接口的方法,不一定需要由一个类型完全实现,接口的方法可以通过在类型中嵌入其他类型或者结构体来实现。

// WashingMachine 洗衣机
type WashingMachine interface {
	wash()
	dry()
}

// 甩干器
type dryer struct{}

// 实现WashingMachine接口的dry()方法
func (d dryer) dry() {
	fmt.Println("甩一甩")
}

// 海尔洗衣机
type haier struct {
	dryer //嵌入甩干器
}

// 实现WashingMachine接口的wash()方法
func (h haier) wash() {
	fmt.Println("洗刷刷")
}

接口嵌套

接口与接口间可以通过嵌套创造出新的接口,嵌套得到的接口的使用与普通接口一样,这里我们让cat实现animal接口:

// Sayer 接口
type Sayer interface {
	say()
}

// Mover 接口
type Mover interface {
	move()
}

// 接口嵌套
type animal interface {
	Sayer
	Mover
}

type cat struct {
	name string
}

func (c cat) say() {
	fmt.Println("喵喵喵")
}

func (c cat) move() {
	fmt.Println("猫会动")
}

func main() {
	var x animal
	x = cat{name: "花花"}
	x.move()
	x.say()
}

空接口

空接口是指没有定义任何方法的接口。因此任何类型都实现了空接口。空接口类型的变量可以存储任意类型的变量。

  • 空接口作为函数的参数

使用空接口实现可以接收任意类型的函数参数。

  • 空接口作为map的值

使用空接口实现可以保存任意值的字典。

类型断言

空接口可以存储任意类型的值,那我们如何获取其存储的具体数据呢?

  • 接口值

一个接口的值(简称接口值)是由一个具体类型具体类型的值两部分组成的。这两部分分别称为接口的动态类型动态值

var w io.Writer
w = os.Stdout
w = new(bytes.Buffer)
w = nil

go能接收java接口 go中的接口_go能接收java接口

想要判断空接口中的值这个时候就可以使用类型断言, 

x.(T)

该语法返回两个参数,第一个参数是x转化为T类型后的变量,第二个值是一个布尔值,若为true则表示断言成功,为false则表示断言失败。

如果要断言多次就需要写多个if判断,这个时候我们可以使用switch语句来实现

 

func justifyType(x interface{}) {
	switch v := x.(type) {
	case string:
		fmt.Printf("x is a string,value is %v\n", v)
	case int:
		fmt.Printf("x is a int is %v\n", v)
	case bool:
		fmt.Printf("x is a bool is %v\n", v)
	default:
		fmt.Println("unsupport type!")
	}
}

 

关于接口需要注意的是,只有当有两个或两个以上的具体类型必须以相同的方式进行处理时才需要定义接口。不要为了接口而写接口,那样只会增加不必要的抽象,导致不必要的运行时损耗。

接口的实质

在使用接口时,我们要将接口看成一个特殊的容器,这个容器只能容纳一个对象,只有实现了这个接口类型的对象才可以放进去。接口变量作为变量来说它也是需要占据内存空间的,通过翻阅 Go 语言的源码可以发现,接口变量也是由结构体来定义的,这个结构体包含两个指针字段,一个字段指向被容纳的对象内存,另一个字段指向一个特殊的结构体 itab,这个特殊的结构体包含了接口的类型信息和被容纳对象的数据类型信息。

// interface structure
type iface struct {
  tab *itab  // 类型指针
  data unsafe.Pointer  // 数据指针
}

type itab struct {
  inter *interfacetype // 接口类型信息
  _type *_type // 数据类型信息
  ...
}

既然接口变量只包含两个指针字段,那么它的内存占用应该是 2 个机器字

用接口来模拟多态

接口是一种特殊的容器,它可以容纳多种不同的对象,只要这些对象都同样实现了接口定义的方法。如果我们将容纳的对象替换成另一个对象,就可以完成多态功能了

package main

import "fmt"

type Fruitable interface {
    eat()
}

type Fruit struct {
    Name string  // 属性变量
    Fruitable  // 匿名内嵌接口变量
}

func (f Fruit) want() {
    fmt.Printf("I like ")
    f.eat() // 外结构体会自动继承匿名内嵌变量的方法
}

type Apple struct {}

func (a Apple) eat() {
    fmt.Println("eating apple")
}

type Banana struct {}

func (b Banana) eat() {
    fmt.Println("eating banana")
}

func main() {
    var f1 = Fruit{"Apple", Apple{}}
    var f2 = Fruit{"Banana", Banana{}}
    f1.want()
    f2.want()
}

---------
I like eating apple
I like eating banana

使用这种方式模拟多态本质上是通过组合属性变量(Name)和接口变量(Fruitable)来做到的,属性变量是对象的数据,而接口变量是对象的功能,将它们组合到一块就形成了一个完整的多态性的结构体。