一、索引相关原理

索引(Index)是帮助MySQL高效获取数据的数据结构。索引的本质是数据结构,可以简单理解为排好序的快速查找数据结构。数据库在存储数据之外,还维护着满足某些特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。

搜索树,其平均复杂度是lgN,具有不错的查询性能。复杂度模型是基于每次相同的操作成本(如都是在内存中完成)来考虑的,数据库实现比较复杂,数据保存在磁盘上,而为了提高性能,每次又可以把部分数据读入内存来计算,因为我们知道访问磁盘的成本大概是访问内存的十万倍左右,所以简单的搜索树难以满足复杂的应用场景。

    通过不断的缩小想要获得数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是我们总是通过同一种查找方式来锁定数据。

计算机硬件延迟的对比图

mysql 索引树高度计算 mysql索引b+树原理_mysql 索引树高度计算

    局部预读性原理告诉我们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到。每一次IO读取的数据我们称之为一页(page)。具体一页有多大数据跟操作系统有关,一般为4k或8k,也就是我们读取一页内的数据时候,实际上才发生了一次IO,这个理论对于索引的数据结构设计非常有帮助。

    每次查找数据时把磁盘IO次数控制在一个很小的数量级,最好是常数数量级。降低磁盘IO次数和查找算法的复杂度两方面提高数据库性能。

    一般所说的索引没有特殊说明时都采用的B+tree(一个高度可控的多路搜索树)结构。

mysql 索引树高度计算 mysql索引b+树原理_数据结构与算法_02

mysql 索引树高度计算 mysql索引b+树原理_数据结构与算法_03

关于上图B+树的说明:

    浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针P1、P2、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。

    如图所示,如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。

    通过上面的分析,我们知道IO次数取决于b+数的高度h,假设当前数据表的数据为N,每个磁盘块的数据项的数量是m,则有h=㏒(m+1)N,当数据量N一定的情况下,m越大,h越小;而m = 磁盘块的大小 / 数据项的大小,磁盘块的大小也就是一个数据页的大小,是固定的,如果数据项占的空间越小,数据项的数量越多,树的高度越低。b+树要求把真实的数据放到叶子节点而不是内层节点,一旦放到内层节点,磁盘块的数据项会大幅度下降,导致树增高。当数据项等于1时将会退化成线性表。

    当b+树的数据项是复合的数据结构,比如(name,age,sex)的时候,b+数是按照从左到右的顺序来建立搜索树的,比如当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来确定下一步的所搜方向,如果name相同再依次比较age和sex,最后得到检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪个节点,因为建立搜索树的时候name就是第一个比较因子,必须要先根据name来搜索才能知道下一步去哪里查询。比如当(张三,F)这样的数据来检索时,b+树可以用name来指定搜索方向,但下一个字段age的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是F的数据了, 这个是非常重要的性质,即索引的最左匹配特性。

    B+树的特点:

  • 节点中的“数据项”从左往右依次增大;
  • 非叶子结点的子树指针与关键字个数相同;
  • 内部节点并不存储真正的信息,而是保存其叶子节点的最小值作为索引。每次插入删除都进行更新(此时用到parent指针),保持最新状态;
  • 任何和关键字相联系的“卫星数据(satellite information)” (边界数据)将与关键字一样存放在叶子节点中;
  • 每个叶子节点还有指向下一个节点的指针next,方便遍历整棵B+树,叶节点还增加了一个指向下一个顺序关联叶节点的指针,以改进顺序读取的速度;
  • 所有叶子节点都处于同一深度是如何实现的
  • 由于内部节点不存储键值关联的附属数据,所以内部节点节省的空间可以存放更多的键值。也就意味着从磁盘存取一页时可获得更多的键值信息。
  • 所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;
  • 非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;

    B+树直接从叶子结点挨个扫一遍就完了,B+树支持range-query非常方便,而B树不支持。这是数据库选用B+树的最主要原因。叶节点形成了一个链,所以对树的全扫描就是对所有叶节点的线性遍历。