1 CART,又名分类回归树

CART,分类回归树,是几乎所有复杂决策树算法的基础,有以下特点:

(1)CART是一棵二叉树;
(2)CART既能是分类树,又能是回归树,由目标任务决定;
(3)当CART是分类树时,采用GINI值作为结点分裂的依据;当CART是回归树时,采用MSE(均方误差)作为结点分裂的依据;

2 分类树和回归树的区别?

针对分类任务,就是分类树;针对回归任务,就是回归树。
分类任务:预测目标是离散值,例如预测该用户是否会逾期,逾期是一类,用1表示,不逾期是另一类,用0表示。分类树采用GINI值作为结点分裂的依据;
回归任务:预测目标是连续值,例如预测用户的身高。回归树采用MSE(均方误差)作为结点分裂的依据。

下面以回归树为例,详细写一下树的分裂和生成过程。

3 回归树算法详解

回归树的算法详解,其实就是回归树的生成过程,说的是一回事儿。

  • 样本集:Samples = {袋装回归树 回归树 分类树_袋装回归树},有N个样本
  • 特征集:Features = {袋装回归树 回归树 分类树_袋装回归树_02},每一个样本对应一组特征
  • 目标值/真实值 集合:T ={袋装回归树 回归树 分类树_决策树_03},每一个样本对应一个目标值,对于回归任务来说,每一个目标值都是一个具有连续值属性的数值。

3.1 步骤如下

1、原始数据集袋装回归树 回归树 分类树_算法_04,此时树的深度袋装回归树 回归树 分类树_算法_05=0。
2、针对集合袋装回归树 回归树 分类树_算法_04,遍历每一个袋装回归树 回归树 分类树_决策树_07的每一个袋装回归树 回归树 分类树_袋装回归树_08,用该袋装回归树 回归树 分类树_袋装回归树_08将原数据集袋装回归树 回归树 分类树_算法_04分裂成2个集合:左集合袋装回归树 回归树 分类树_袋装回归树_11(<=value的样本)、右集合袋装回归树 回归树 分类树_决策树_12(>value的样本),每一个集合也叫做一个结点。分别计算这2个集合的mse,找到使得袋装回归树 回归树 分类树_袋装回归树_13最小的那个袋装回归树 回归树 分类树_袋装回归树_08,记录下此时的袋装回归树 回归树 分类树_决策树_07名称和袋装回归树 回归树 分类树_袋装回归树_08,这个就是最佳分割特征以及该特征的最佳分割值;
每一个集合/结点袋装回归树 回归树 分类树_结点_17的计算方法如下:

1、袋装回归树 回归树 分类树_袋装回归树_18,其中袋装回归树 回归树 分类树_回归树_19为该集合内样本总数,袋装回归树 回归树 分类树_决策树_20为该集合内每一个样本的目标值(ps:这个mean就是该结点的值,也就是落在该结点内的样本的预测值,同一个结点中的样本具有同一个预测值。)
2、袋装回归树 回归树 分类树_决策树_21

为什么要用均方差mse来作为分裂的依据呢?

只要是能衡量预测值和真实值/目标值之间的差距的数学公式,都可以用,例如信息增益、信息增益比、基尼系数等等。但是均方差有更好的好处:一阶导数和二阶导数可求并好求。

3、找到最佳分割袋装回归树 回归树 分类树_决策树_07以及最佳分割袋装回归树 回归树 分类树_袋装回归树_08之后,用该袋装回归树 回归树 分类树_袋装回归树_08将集合S分裂成2个集合:左集合袋装回归树 回归树 分类树_袋装回归树_11、右集合袋装回归树 回归树 分类树_决策树_12,每一个集合也叫做一个结点。此时树的深度depth += 1。
4、针对集合袋装回归树 回归树 分类树_回归树_27分别重复步骤2,3,直到达到终止条件。

一)终止条件有:
1、特征已经用完了:没有可供使用的特征再进行分裂了,则树停止分裂;
2、子结点中的样本已经都是同一类:此时,样本已经全部被划分出来了,不用再进行区分,该结点停止分裂(不过一般很难达到,达到的话,该树肯定过拟合);
3、子节点中没有样本了:此时该结点已经没有样本可供划分,该结点停止分裂;
二)很多复杂的决策树算法(例如lightgbm)中还有额外的终止条件,为了防止过拟合:
1、树达到了最大深度:depth >= max_depth,树停止分裂。
2、结点的样本数量达到了阈值:如果一个集合(结点)的样本数量 < min_samples_leaf,则树停止分裂;
其中,max_depth和min_samples_leaf都是人为制定的超参数。

5、最后生成的、不再进行分裂的集合就叫做叶子结点。落在该叶子节点内的样本的预测值,就是该叶子结点的值。同一个叶子结点中的样本具有同一个预测值。

叶子结点值的计算方法:袋装回归树 回归树 分类树_袋装回归树_18