1、 一致性检查点(checkpoint)
• Flink 故障恢复机制的核心,就是应用状态的一致性检查点
• 有状态流应用的一致检查点,其实就是所有任务的状态,在某个时间点的一份拷贝(一份快照);这个时间点,应该是所有任务都恰好处理完一个相同的输入数据的时候
2、从检查点恢复状态
• 在执行流应用程序期间,Flink 会定期保存状态的一致检查点
• 如果发生故障, Flink 将会使用最近的检查点来一致恢复应用程序的状态,并重新启动处理流程
2.1 恢复状态流程
1)重启应用
• 遇到故障之后,第一步就是重启应用
2)状态重置
• 第二步是从 checkpoint 中读取状态,将状态重置
• 从检查点重新启动应用程序后,其内部状态与检查点完成时的状态完全相同
3)数据恢复
第三步:开始消费并处理检查点到发生故障之间的所有数据
• 这种检查点的保存和恢复机制可以为应用程序状态提供“精确一次” (exactly-once)的一致性,因为所有算子都会保存检查点并恢复其所有状 态,这样一来所有的输入流就都会被重置到检查点完成时的位置
3、 Flink 检查点算法
• 一种简单的想法
—— 暂停应用,保存状态到检查点,再重新恢复应用
• Flink 的改进实现
—— 基于 Chandy-Lamport 算法的分布式快照
—— 将检查点的保存和数据处理分离开,不暂停整个应用
3.1 检查点分界线(Checkpoint Barrier)
• Flink 的检查点算法用到了一种称为分界线(barrier)的特殊数据形式,用来把一条流上数据按照不同的检查点分开
• 分界线之前到来的数据导致的状态更改,都会被包含在当前分界线所属 的检查点中;而基于分界线之后的数据导致的所有更改,就会被包含在 之后的检查点中
1)有两个输入流的应用程序,用并行的两个 Source 任务来读取
2)JobManager 会向每个 source 任务发送一条带有新检查点 ID 的消息,通过这 种方式来启动检查点
3.1)数据源将它们的状态写入检查点,并发出一个检查点 barrier
3.2)状态后端在状态存入检查点之后,会返回通知给 source 任务,source 任务就会向 JobManager 确认检查点完成
3.2 分界线对齐(barrier)
1)开始对齐
• 分界线对齐:barrier 向下游传递,sum 任务会等待所有输入分区的 barrier 到达
• 对于barrier已经到达的分区,继续到达的数据会被缓存
• 而barrier尚未到达的分区,数据会被正常处理
2)结束对齐
当收到所有输入分区的 barrier 时,任务就将其状态保存到状态后端的检查点中, 然后将 barrier 继续向下游转发
3)下游继续传递
向下游转发检查点 barrier 后,任务继续正常的数据处理
4)Sink确认
• Sink 任务向 JobManager 确认状态保存到 checkpoint 完毕
• 当所有任务都确认已成功将状态保存到检查点时,检查点就真正完成了
4、 保存点(save points)
• Flink 还提供了可以自定义的镜像保存功能,就是保存点(savepoints)
• 原则上,创建保存点使用的算法与检查点完全相同,因此保存点可以认为就是具有一些额外元数据的检查点
• Flink不会自动创建保存点,因此用户(或者外部调度程序)必须明确地触发创建操作
• 保存点是一个强大的功能。除了故障恢复外,保存点可以用于:有计划 的手动备份,更新应用程序,版本迁移,暂停和重启应用,等等