一、CountDownLatch 
1.应用场景
 
在实际多线程并发开发过程中,我们会碰见很多等待子线程完毕后在继续执行的情况,(如多个子线程下载文件,所有子线程执行完毕后再重命名为文件名)。 
2.使用方式 
CountDownLatch的构造函数接受一个int类型的参数作为计数器,调用countDwon()方法,计数器减1,await()方法阻塞当前线程,直到计数器变为0;、 
补充: 
    计数器为0的时候,调用awaite()方法不会阻塞主线程; 
    初始化后,不能修改计数器的值; 
    可以使用await(long time,TimeUnit unit)等待特定时间后,就不阻塞主线程; 

3.实例代码


public class Main {   
    //等待2个子线程执行完毕,计数器为2   
    static CountDownLatch countDownLatch = new CountDownLatch(2);   
   
    public static void main(String[] args) {   
        System.out.println("start subThread doing...");   
        //创建并开启2个子线程   
        SubThread subThread1 = new SubThread();   
        SubThread subThread2 = new SubThread();   
        subThread1.start();   
        subThread2.start();   
   
        try {   
            //阻塞主线程,等待子线程结束   
            countDownLatch.await();   
        } catch (InterruptedException e) {   
            e.printStackTrace();   
        }   
   
        System.out.println("subThread are finish...");   
    }   
   
    static class SubThread extends Thread {   
        @Override   
        public void run() {   
            //模拟执行任务   
            try {   
                sleep(3000);   
            } catch (InterruptedException e) {   
                e.printStackTrace();   
            }   
            //子线程执行完毕,减少计数器   
            System.out.println(getName() + " done...");   
            countDownLatch.countDown();   
        }   
    }   
}

运行结果:当Thread-1、Thread-0两个子线程执行完毕后,在运行main线程后续的逻辑 

start subThread doing... 
Thread-1 done... 
Thread-0 done... 
subThread are finish...


二、CyclicBarrier 
1.应用场景 


如果当你遇见需要让一组线程达到同一个屏障(同步点)时被阻塞,直到最后一个线程达到屏障时,屏障才会打开的情况。 


2.使用方式 


CycliBarrier默认的构造方法CyclicBarrier(int parties),参数标识屏障拦截的线程个数,每个线程调用await()方法告诉SyclicBarrier我们已经达到屏障了,然后当前线程被阻塞。当所有子线程都达到屏障后,则继续执行子线程的后续逻辑。 


补充: 


CyclicBarrier还提供了一个更高级的函数CyclicBarrier(int parties,Runnable barrierAction),用于在线程达到屏障时,优先执行barrierAction。 


3.实例代码 


public class Main { 
    //拦截2个子线程屏障 
    static CyclicBarrier cyclicBarrier = new CyclicBarrier(2); 
 
    public static void main(String[] args) { 
        System.out.println("start subThread doing..."); 
        SubThread subThread1 = new SubThread(); 
        SubThread subThread2 = new SubThread(); 
        subThread1.start(); 
        subThread2.start(); 
    } 
 
    static class SubThread extends Thread { 
        @Override 
        public void run() { 
            try { 
                System.out.println(getName() + " doing first things."); 
                //模拟子线程执行第一个任务 
                sleep(3000); 
                System.out.println(getName() + " done first things."); 
            } catch (InterruptedException e) { 
                e.printStackTrace(); 
            } 
             
            try { 
                //完成第一个任务,告知达到屏障 
                cyclicBarrier.await(); 
            } catch (InterruptedException e) { 
                e.printStackTrace(); 
            } catch (BrokenBarrierException e) { 
                e.printStackTrace(); 
            } 
 
 
            //所有子线程都完成第一个任务后,继续运行每个子线程的下一个任务 
            System.out.println(getName() + " doing other things."); 
        } 
    } 
}

运行结果:当子线程都执行完第一个任务到达屏障后,执行下一个任务 


start subThread doing... 
Thread-0 doing first things. 
Thread-1 doing first things. 
Thread-1 done first things. 
Thread-0 done first things. 
Thread-0 doing other things. 
Thread-1 doing other things.


三、Semaphore 
1.应用场景
 


多线程访问公共资源的情况在开发过程中经常遇见,如数据库连接,可能开启几十个线程进行并发读取,但是考虑到数据库连接性能和消耗,我们必须控制10个线程哪个是连接数据库。Semaphore就是用来控制同时访问特定资源的线程数量。 


2.使用方式 


Semaphore的构造方法Semaphore(int permits),permits标识许可证数量。执行任务前,acquire()方法获取一个许可证;任务执行完成后调用relese()方法归还许可证。没有获得许可证的子线程就阻塞等待。 


补充: 


tryAcquire():尝试获取许可证; 


intavaliablePermits():返回信号量中当前许可证的个数; 


intgetQueueLength():返回正在等待获取许可证的线程个数; 


booleanhasQueueThreads():是否有线程正在等待许可证; 


reducePermits(int reduction):减少reduction个许可证; 


getQueuedThreads():返回所有等待获取许可证的线程集合; 


3.实例代码 


public class Main { 
    //创建2个许可证 
    static Semaphore semaphore = new Semaphore(2); 
 
    public static void main(String[] args) { 
        System.out.println("start subThread doing..."); 
        //同时开启4个子线程运行 
        for (int i = 0; i < 4; i++) { 
            SubThread subThread = new SubThread(); 
            subThread.start(); 
        } 
    } 
 
    static class SubThread extends Thread { 
        @Override 
        public void run() { 
            try { 
                //执行任务前获取许可证 
                semaphore.acquire(); 
                System.out.println(getName() + "doing things."); 
                sleep(3000); 
                //执行完任务释放许可证 
                semaphore.release(); 
                System.out.println(getName() + "finish things."); 
            } catch (InterruptedException e) { 
                e.printStackTrace(); 
            } 
        } 
    } 
}

运行结果:同时只有2个线程运行,当某个线程运行完毕释放许可后,下一个线程才获取许可运行; 


start subThread doing... 
Thread-0doing things. 
Thread-1doing things. 
Thread-1finish things. 
Thread-2doing things. 
Thread-0finish things. 
Thread-3doing things. 
Thread-2finish things. 
Thread-3finish things.


四、Exchanger 
1.应用场景 


在某些实际业务如流水录入中,为了避免错误。采用两个人同时录入,并对比录入的结果是否一致。Exchanger用于进行线程之间的数据交换,它提供了一个同步点,两个线程可以交换彼此的数据。 


2.使用方式 


两个线程通过exchange()方法交换数据,如果一个线程执行exchange()方法,它会一直等待第二个线程也执行exchange()方法。当两个线程都达到同步点时,就可以交换数据,将本线程产生的数据传递给对方。 


3.实例代码 


public class Main { 
    //用户线程间交换数据(String)对象exchanger 
    static Exchanger<String> exchanger = new Exchanger<>(); 
 
    public static void main(String[] args) { 
        //创建2个子线程分别执行 
        SubThread1 subThread1 = new SubThread1(); 
        SubThread2 subThread2 = new SubThread2(); 
        subThread1.start(); 
        subThread2.start();  
    } 
 
    static class SubThread1 extends Thread { 
        @Override 
        public void run() { 
            try { 
                System.out.println(getName() + "start doing..."); 
                //模拟执行完成后,获取结果result1,并将result1交换给对方线程 
                sleep(3000); 
                String result1 = "3000"; 
                String result2 = exchanger.exchange(result1); 
                //待两个线程都执行完毕后,交换数据进行比较 
                System.out.println(getName() + " thread1 result:" + result1 + " is equals thread2 result:" + result2 + 
                        "," + result1.equals(result2)); 
            } catch (InterruptedException e) { 
                e.printStackTrace(); 
            } 
        } 
    } 
 
    static class SubThread2 extends Thread { 
        @Override 
        public void run() { 
            try { 
                System.out.println(getName() + "start doing..."); 
                //模拟执行完成后,获取结果result2,并将result2交换给对方线程 
                sleep(2000); 
                String result2 = "2000"; 
                String result1 = exchanger.exchange(result2); 
                //待两个线程都执行完毕后,交换数据进行比较 
                System.out.println(getName() + " thread1 result:" + result1 + " is equals thread2 result:" + result2 + 
                        "," + result1.equals(result2)); 
            } catch (InterruptedException e) { 
                e.printStackTrace(); 
            } 
        } 
    } 
}

运行结果:线程1优先执行完毕,等待线程0执行完毕后,交换数据分别进行结果比较 

Thread-1start doing... 
Thread-0start doing... 
Thread-1finish doing... 
Thread-0finish doing... 
Thread-0 thread1 result:3000 is equals thread2 result:2000,false 
Thread-1 thread1 result:3000 is equals thread2 result:2000,false