1. 简介

   使用ptrace向已运行进程中注入.so并执行相关函数,其中的“注入”二字的真正含义为:此.so被link到已运行进程(以下简称为:目标进程)空间中,从而.so中的函数在目标进程空间中有对应的地址,然后通过此地址便可在目标进程中进行调用。


    到底是如何注入的呢?


    本文实现方案为:在目标进程中,通过dlopen把需要注入的.so加载到目标进程的空间中。


2. 如何让目标进程执行dlopen加载.so?

    显然,目标进程本来是没有实现通过dlopen来加载我们想注入的.so,为了实现此功能,我们需要目标进程执行一段我们实现的代码,此段代码的功能为通过dlopen来加载一个.so。


3. 【加载.so的实现代码】

   加载需要注入的.so的实现代码如下所示:      


 

.global _dlopen_addr_s       @dlopen函数在目标进程中的地址     注:以下全局变化在C中可读写  
.global _dlopen_param1_s     @dlopen参数1<.so>在目标进程中的地址   
.global _dlopen_param2_s     @dlopen参数2在目标进程中的地址  
  
.global _dlsym_addr_s        @dlsym函数在目标进程中的地址  
.global _dlsym_param2_s      @dlsym参数2在目标进程中的地址,其实为函数名  
  
.global _dlclose_addr_s      @dlcose在目标进程中的地址  
  
.global _inject_start_s      @汇编代码段的起始地址  
.global _inject_end_s        @汇编代码段的结束地址  
  
.global _inject_function_param_s  @hook_init参数在目标进程中的地址  
  
.global _saved_cpsr_s        @保存CPSR,以便执行完hook_init之后恢复环境  
.global _saved_r0_pc_s       @保存r0-r15,以便执行完hook_init之后恢复环境  
  
  
.data  
  
_inject_start_s:  
    @ debug loop  
3:  
    @sub r1, r1, #0  
    @B 3b  
  
    @ dlopen  
    ldr r1, _dlopen_param2_s        @设置dlopen第二个参数, flag  
    ldr r0, _dlopen_param1_s        @设置dlopen第一个参数 .so  
    ldr r3, _dlopen_addr_s          @设置dlopen函数  
    blx r3                          @执行dlopen函数,返回值位于r0中  
    subs r4, r0, #0                 @把dlopen的返回值soinfo保存在r4中,以方便后面dlclose使用  
    beq 2f  
  
    @dlsym  
    ldr r1, _dlsym_param2_s        @设置dlsym第二个参数,第一个参数已经在r0中了  
    ldr r3, _dlsym_addr_s          @设置dlsym函数  
    blx r3                         @执行dlsym函数,返回值位于r0中  
    subs r3, r0, #0                @把返回值<hook_init在目标进程中的地址>保存在r3中  
    beq 1f  
  
    @call our function  
    ldr r0, _inject_function_param_s  @设置hook_init第一个参数  
        blx r3                            @执行hook_init  
    subs r0, r0, #0  
    beq 2f  
  
1:  
    @dlclose                          
    mov r0, r4                        @把dlopen的返回值设为dlcose的第一个参数  
    ldr r3, _dlclose_addr_s           @设置dlclose函数  
    blx r3                            @执行dlclose函数  
  
2:  
    @restore context  
    ldr r1, _saved_cpsr_s             @恢复CPSR  
    msr cpsr_cf, r1  
    ldr sp, _saved_r0_pc_s            @恢复寄存器r0-r15  
    ldmfd sp, {r0-pc}  
      
  
      
  
_dlopen_addr_s:                           @初始化_dlopen_addr_s  
.word 0x11111111  
  
_dlopen_param1_s:  
.word 0x11111111  
  
_dlopen_param2_s:  
.word 0x2                                 @RTLD_GLOBAL  
  
_dlsym_addr_s:  
.word 0x11111111  
  
_dlsym_param2_s:  
.word 0x11111111  
  
_dlclose_addr_s:  
.word 0x11111111  
  
_inject_function_param_s:  
.word 0x11111111  
  
_saved_cpsr_s:  
.word 0x11111111  
  
_saved_r0_pc_s:  
.word 0x11111111  
  
  
_inject_end_s:                     @代码结束地址  
  
.space 0x400, 0                    @代码段空间大小  
  
.end  

4. 如何把【加载.so的实现代码】写入目标进程并启动执行?
   为了把【加载.so的实现代码】写入目标进程,主要有以下两步操作:

   1) 在目标进程中找到存放【加载.so的实现代码】的空间(通过mmap实现)

   2) 把【加载.so的实现代码】写入目标进程指定的空间

   3) 启动执行

4.1 在目标进程中找到存放【加载.so的实现代码】的空间
    通过mmap来实现,其实现步骤如下:

   1) 获取目标进程中mmap地址
   2) 把mmap参数据放入r0-r3,另外两个写入目标进程sp 
   3) pc设置为mmap地址,lr设置为0
   4) 把准备好的寄存器写入目标进程(PTRACE_SETREGS),并启动目标进程运行(PTRACE_CONT)
   5) 分配的内存首地址位于r0 (PTRACE_GETREGS)

4.2 为【加载.so的实现代码】中的全局变量赋值
   1) 获取目标进程中dlopen地址并赋值给_dlopen_addr_s

   2) 获取目标进程中dlsym地址并赋值给_dlsym_addr_s

   3) 获取目标进程中dlclose地址并赋值给_dlclose_addr_s

   4) 把需要加载的.so的路径放入 汇编代码中,并获取此路径在目标进程中的地址然后赋值给_dlopen_param1_s

   5) 把需要加载的.so中的hook_init放入 汇编代码中,并获取此路径在目标进程中的地址然后赋值给_dlsym_param2_s

   6) 把目标进程中的cpsr保存在_saved_cpsr_s中

   7) 把目标进程中的r0-r15存入汇编代码中,并获取此变量在目标进程中的地址然后赋值给_saved_r0_pc_s

   8) 通过ptrace( PTRACE_POKETEXT,...)把汇编代码写入目标进程中,起始地址由前面的mmap所分配

   9) 把目标进程的pc设置为汇编代码的起始地址,然后调用ptrace(PTRACE_DETACH,...)以启动目标进程执行

5. 把汇编代码写入目标进程并执行的实现代码
5.1 主函数 writecode_to_targetproc
#include <stdio.h>  
#include <stdlib.h>  
#include <asm/ptrace.h>  
#include <asm/user.h>  
#include <asm/ptrace.h>  
#include <sys/wait.h>  
#include <sys/mman.h>  
#include <dlfcn.h>  
#include <dirent.h>  
#include <unistd.h>  
#include <string.h>  
#include <android/log.h>  
#include <sys/types.h>  
#include <sys/socket.h>  
#include <netinet/in.h>  
#include <sys/stat.h>  
  
#define MAX_PATH 0x100  
#define REMOTE_ADDR( addr, local_base, remote_base ) ( (uint32_t)(addr) + (uint32_t)(remote_base) - (uint32_t)(local_base) )  
  
/* write the assembler code into target proc, 
 * and invoke it to execute 
 */  
int writecode_to_targetproc(   
    pid_t target_pid, // target process pid  
    const char *library_path, // the path of .so that will be   
                              // upload to target process   
    const char *function_name, // .so init fucntion e.g. hook_init  
    void *param, // the parameters of init function  
    size_t param_size ) // number of parameters   
{  
    int ret = -1;  
    void *mmap_addr, *dlopen_addr, *dlsym_addr, *dlclose_addr;  
    void *local_handle, *remote_handle, *dlhandle;  
    uint8_t *map_base;  
    uint8_t *dlopen_param1_ptr, *dlsym_param2_ptr, *saved_r0_pc_ptr, *inject_param_ptr, *remote_code_ptr, *local_code_ptr;  
  
    struct pt_regs regs, original_regs;  
  
    // extern global variable in the assembler code   
    extern uint32_t _dlopen_addr_s, _dlopen_param1_s, _dlopen_param2_s, \  
            _dlsym_addr_s, _dlsym_param2_s, _dlclose_addr_s, \  
            _inject_start_s, _inject_end_s, _inject_function_param_s, \  
            _saved_cpsr_s, _saved_r0_pc_s;  
  
    uint32_t code_length;  
  
    long parameters[10];  
  
    // make target_pid as its child process and stop  
    if ( ptrace_attach( target_pid ) == -1 )  
        return -1;  
  
    // get the values of 18 registers from target_pid  
    if ( ptrace_getregs( target_pid, ®s ) == -1 )  
        goto exit;  
  
    // save original registers   
    memcpy( &original_regs, ®s, sizeof(regs) );  
  
    // get mmap address from target_pid  
    // the mmap is the address of mmap in the cur process  
    mmap_addr = get_remote_addr( target_pid, "/system/lib/libc.so", (void *)mmap );  
  
    // set mmap parameters  
    parameters[0] = 0;  // addr  
    parameters[1] = 0x4000; // size  
    parameters[2] = PROT_READ | PROT_WRITE | PROT_EXEC;  // prot  
    parameters[3] =  MAP_ANONYMOUS | MAP_PRIVATE; // flags  
    parameters[4] = 0; //fd  
    parameters[5] = 0; //offset  
  
    // execute the mmap in target_pid  
    if ( ptrace_call( target_pid, (uint32_t)mmap_addr, parameters, 6, ®s ) == -1 )  
        goto exit;  
  
    // get the return values of mmap <in r0>  
    if ( ptrace_getregs( target_pid, ®s ) == -1 )  
        goto exit;  
  
    // get the start address for assembler code  
    map_base = (uint8_t *)regs.ARM_r0;  
  
    // get the address of dlopen, dlsym and dlclose in target process  
    dlopen_addr = get_remote_addr( target_pid, "/system/bin/linker", (void *)dlopen );  
    dlsym_addr = get_remote_addr( target_pid, "/system/bin/linker", (void *)dlsym );  
    dlclose_addr = get_remote_addr( target_pid, "/system/bin/linker", (void *)dlclose );  
  
    // set the start address for assembler code in target process  
    remote_code_ptr = map_base + 0x3C00;  
  
    // set the start address for assembler code in cur process  
    local_code_ptr = (uint8_t *)&_inject_start_s;  
  
    // set global variable of assembler code  
    // and these address is in the target process  
    _dlopen_addr_s = (uint32_t)dlopen_addr;  
    _dlsym_addr_s = (uint32_t)dlsym_addr;  
    _dlclose_addr_s = (uint32_t)dlclose_addr;  
  
    code_length = (uint32_t)&_inject_end_s - (uint32_t)&_inject_start_s;  
      
    dlopen_param1_ptr = local_code_ptr + code_length + 0x20;  
    dlsym_param2_ptr = dlopen_param1_ptr + MAX_PATH;  
    saved_r0_pc_ptr = dlsym_param2_ptr + MAX_PATH;  
    inject_param_ptr = saved_r0_pc_ptr + MAX_PATH;  
  
  
    // save library path to assembler code global variable  
    strcpy( dlopen_param1_ptr, library_path );  
    _dlopen_param1_s = REMOTE_ADDR( dlopen_param1_ptr, local_code_ptr, remote_code_ptr );  
      
  
    // save function name to assembler code global variable  
    strcpy( dlsym_param2_ptr, function_name );  
    _dlsym_param2_s = REMOTE_ADDR( dlsym_param2_ptr, local_code_ptr, remote_code_ptr );  
  
    // save cpsr to assembler code global variable  
    _saved_cpsr_s = original_regs.ARM_cpsr;  
  
    // save r0-r15 to assembler code global variable  
    memcpy( saved_r0_pc_ptr, &(original_regs.ARM_r0), 16 * 4 ); // r0 ~ r15  
    _saved_r0_pc_s = REMOTE_ADDR( saved_r0_pc_ptr, local_code_ptr, remote_code_ptr );  
  
    // save function parameters to assembler code global variable  
    memcpy( inject_param_ptr, param, param_size );  
    _inject_function_param_s = REMOTE_ADDR( inject_param_ptr, local_code_ptr, remote_code_ptr );  
  
    // write the assembler code into target process  
    // now the values of global variable is in the target process space  
    ptrace_writedata( target_pid, remote_code_ptr, local_code_ptr, 0x400 );  
  
    memcpy( ®s, &original_regs, sizeof(regs) );  
  
    // set sp and pc to the start address of assembler code  
    regs.ARM_sp = (long)remote_code_ptr;  
    regs.ARM_pc = (long)remote_code_ptr;  
  
    // set registers for target process  
    ptrace_setregs( target_pid, ®s );  
  
    // make the target_pid is not a child process of cur process  
    // and make target_pid continue to running  
    ptrace_detach( target_pid );  
  
    // now finish it successfully  
    ret = 0;  
  
exit:  
    return ret;  
}  

5.2 attach目标进程ptrace_attach
 

 

int ptrace_attach( pid_t pid )  
{  
    // after PTRACE_ATTACH, the proc<pid> will stop  
    if ( ptrace( PTRACE_ATTACH, pid, NULL, 0  ) < 0 )  
    {  
        perror( "ptrace_attach" );  
        return -1;  
    }  
  
    // wait proc<pid> stop  
    waitpid( pid, NULL, WUNTRACED );  
  
    // after PTRACE_SYSCALL, the proc<pid> will continue,  
    // but when exectue sys call function, proc<pid> will stop  
    if ( ptrace( PTRACE_SYSCALL, pid, NULL, 0  ) < 0 )  
    {  
        perror( "ptrace_syscall" );  
        return -1;  
    }  
  
    // wait proc<pid> stop  
    waitpid( pid, NULL, WUNTRACED );  
  
    return 0;  
}  

5.3 获取目标进程寄存器值ptrace_getregs
 

 

int ptrace_getregs( pid_t pid, struct pt_regs* regs )  
{  
    if ( ptrace( PTRACE_GETREGS, pid, NULL, regs ) < 0 )  
    {  
        perror( "ptrace_getregs: Can not get register values" );  
        return -1;  
    }  
  
    return 0;  
}  


 

5.4 获取目标进程中指定模块中指定函数的地址get_remote_addr
 

   
/* find the start address of module whose name is module_name  
 * in the designated process 
 */  
void* get_module_base( pid_t pid, const char* module_name )  
{  
    FILE *fp;  
    long addr = 0;  
    char *pch;  
    char filename[32];  
    char line[1024];  
  
    if ( pid < 0 )  
    {  
        /* self process */  
        snprintf( filename, sizeof(filename), "/proc/self/maps", pid );  
    }  
    else  
    {  
        snprintf( filename, sizeof(filename), "/proc/%d/maps", pid );  
    }  
  
    fp = fopen( filename, "r" );  
  
    if ( fp != NULL )  
    {  
        while ( fgets( line, sizeof(line), fp ) )  
        {  
            if ( strstr( line, module_name ) )  
            {  
                pch = strtok( line, "-" );  
                addr = strtoul( pch, NULL, 16 );  
  
                if ( addr == 0x8000 )  
                    addr = 0;  
  
                break;  
            }  
        }  
        fclose( fp ) ;  
    }  
  
    return (void *)addr;  
}  
  
void* get_remote_addr( pid_t target_pid, const char* module_name, void* local_addr )  
{  
    void* local_handle, *remote_handle;  
  
    local_handle = get_module_base( -1, module_name );  
    remote_handle = get_module_base( target_pid, module_name );  
  
    return (void *)( (uint32_t)local_addr + (uint32_t)remote_handle - (uint32_t)local_handle );  
}  
 

 

5.5 在目标进程中执行指定函数ptrace_call
 

int ptrace_call( pid_t pid, uint32_t addr, long *params, uint32_t num_params, struct pt_regs* regs )  
{  
    uint32_t i;  
  
    // put the first 4 parameters into r0-r3  
    for ( i = 0; i < num_params && i < 4; i ++ )  
    {  
        regs->uregs[i] = params[i];  
    }  
  
    // push remained params into stack  
    if ( i < num_params )  
    {  
        regs->ARM_sp -= (num_params - i) * sizeof(long) ;  
        ptrace_writedata( pid, (void *)regs->ARM_sp, (uint8_t *)¶ms[i], (num_params - i) * sizeof(long) );  
    }  
    // set the pc to func <e.g: mmap> that will be executed  
    regs->ARM_pc = addr;  
    if ( regs->ARM_pc & 1 )  
    {  
        /* thumb */  
        regs->ARM_pc &= (~1u);  
        regs->ARM_cpsr |= CPSR_T_MASK;  
    }  
    else  
    {  
        /* arm */  
        regs->ARM_cpsr &= ~CPSR_T_MASK;  
    }  
  
    // when finish this func, pid will stop  
    regs->ARM_lr = 0;      
  
    // set the regsister and start to execute  
    if ( ptrace_setregs( pid, regs ) == -1   
        || ptrace_continue( pid ) == -1 )  
    {  
        return -1;  
    }  
  
    // wait pid finish work and stop  
    waitpid( pid, NULL, WUNTRACED );  
  
    return 0;  
}  

5.6 把代码写入目标进程指定地址ptrace_writedata
 

 

int ptrace_writedata( pid_t pid, uint8_t *dest, uint8_t *data, size_t size )  
{  
    uint32_t i, j, remain;  
    uint8_t *laddr;  
  
    union u {  
        long val;  
        char chars[sizeof(long)];  
    } d;  
  
    j = size / 4;  
    remain = size % 4;  
  
    laddr = data;  
  
    for ( i = 0; i < j; i ++ )  
    {  
        memcpy( d.chars, laddr, 4 );  
        ptrace( PTRACE_POKETEXT, pid, dest, d.val );  
  
        dest  += 4;  
        laddr += 4;  
    }  
  
    if ( remain > 0 )  
    {  
        d.val = ptrace( PTRACE_PEEKTEXT, pid, dest, 0 );  
        for ( i = 0; i < remain; i ++ )  
        {  
            d.chars[i] = *laddr ++;  
        }  
  
        ptrace( PTRACE_POKETEXT, pid, dest, d.val );  
          
    }  
  
    return 0;  
}  
 

 

5.7 设置目标进程寄存器ptrace_setregs
 

int ptrace_setregs( pid_t pid, struct pt_regs* regs )  
{  
    if ( ptrace( PTRACE_SETREGS, pid, NULL, regs ) < 0 )  
    {  
        perror( "ptrace_setregs: Can not set register values" );  
        return -1;  
    }  
  
    return 0;  
}  
 

 

5.8 detach目标进程ptrace_detach
 

int ptrace_detach( pid_t pid )  
{  
    if ( ptrace( PTRACE_DETACH, pid, NULL, 0 ) < 0 )  
    {  
        perror( "ptrace_detach" );  
        return -1;  
    }  
  
    return 0;  
}  


6.  需要被加载的.so
    需要被加载的.so例子程序如下,其目的是替换目标进程libapp.so中的strlen函数。其主要实现见hook_init。

 

int g_isInit = 0;      
pthread_t g_hThread;       
  
__attribute__((visibility("default"))) void hook_init( char *args )  
{  
   if( g_isInit == 1 )  
   {  
      printf("i am already in!");  
      return;  
   }  
  
   void* soHandle = NULL;  
     
   // the libapp.so is a .so of target process, and it call strcmp  
   soHandle  = dlopen( "libapp.so", RTLD_GLOBAL );  
   if( soHandle != NULL )  
   {  
      g_realstrcmp = NULL;  
      replaceFunc( soHandle, "strcmp", my_strcmp, (void**)&g_realstrcmp );  
        
      int ret = pthread_create( &g_hThread, NULL, my_thread, NULL );  
      if( ret != 0 )  
      {  
         printf("create thread error:%d", ret );  
      }  
        
      g_isInit = 1;  
   }  
     
}  

 

6.1 替换函数replaceFunc
 

 

// replace function of libapp.so  
// e.g: replace strcmp of libapp.so with my_strcmp  
void replaceFunc(void *handle,const char *name, void* pNewFun, void** pOldFun )  
{  
  
   if(!handle)  
      return;  
        
   soinfo *si = (soinfo*)handle;     
   Elf32_Sym *symtab = si->symtab;    
   const char *strtab = si->strtab;    
   Elf32_Rel *rel = si->plt_rel;  
   unsigned count = si->plt_rel_count;   
   unsigned idx;   
  
   // these external functions that are called by libapp.so   
   // is in the plt_rel  
   for(idx=0; idx<count; idx++)   
   {    
      unsigned type = ELF32_R_TYPE(rel->r_info);    
      unsigned sym = ELF32_R_SYM(rel->r_info);    
      unsigned reloc = (unsigned)(rel->r_offset + si->base);    
      char *sym_name = (char *)(strtab + symtab[sym].st_name);   
        
      if(strcmp(sym_name, name)==0)   
      {   
         *pOldFun = (void *)*((unsigned*)reloc);   
          *((unsigned*)reloc)= pNewFun;  
         break;  
      }   
      rel++;    
   }   
}  

 

6.2 新函数及其它函数
 

 

// global function variable, save the address of strcmp of libapp.so  
int (*g_realstrcmp)(const char *s1, const char *s2);  
  
// my strcmp function  
int my_strcmp(const char *s1, const char *s2)  
{  
    if( g_realstrcmp != NULL )  
    {  
        int nRet = g_realstrcmp( s1, s2 );  
        printf("***%s: s1=%s, s2=%s\n",__FUNCTION__, s1, s2 );  
        return nRet;  
    }  
  
    return -1;  
}  
  
  
// create a thread  
void* my_thread( void* pVoid )  
{  
    int sock;  
    sock = socket(AF_INET, SOCK_DGRAM, 0);  
    if( sock < -1 )  
    {  
      printf("create socket failed!\n");  
      return 0;  
    }  
  
    struct sockaddr_in addr_serv;    
    int len;    
    memset(&addr_serv, 0, sizeof(struct sockaddr_in));    
    addr_serv.sin_family = AF_INET;    
    addr_serv.sin_port = htons(9999);     
    addr_serv.sin_addr.s_addr = inet_addr("127.0.0.1");    
    len = sizeof(addr_serv);    
  
    int flags = fcntl( sock, F_GETFL, 0);   
    fcntl( sock, F_SETFL, flags | O_NONBLOCK);  
    int nPreState = -1;  
    unsigned char data=0;  
    while( 1 )  
    {  
        data++;  
        sendto( sock, &data,  sizeof( data ), 0, (struct sockaddr *)&addr_serv, sizeof( addr_serv ) );  
        usleep( 30000 );  
    }  
}