神经网络的理论知识不是本文讨论的重点,假设读者们都是已经了解RNN的基本概念,并希望能用一些框架做一些简单的实现。这里推荐神经网络必读书目:邱锡鹏《神经网络与深度学习》。本文基于Pytorch简单实现CIFAR-10、MNIST手写体识别,读者可以基于此两个简单案例进行拓展,实现自己的深度学习入门。
环境说明
python 3.6.7
Pytorch的CUP版本
Pycharm编辑器
部分可能报错:参见pytorch安装错误及解决
基于Pytorch的CIFAR-10图片分类
代码实现
# coding = utf-8
import torch
import torch.nn
import numpy as np
from torchvision.datasets import CIFAR10
from torchvision import transforms
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
import torch.nn.functional as F
import torch.optim as optimizer
'''
The compose function allows for multiple transforms.
transform.ToTensor() converts our PILImage to a tensor of
shape (C x H x W) in the range [0, 1]
transform.Normalize(mean, std) normalizes a tensor to a (mean, std)
for (R, G, B)
'''
_task = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
# 注意:此处数据集在本地,因此download=False;若需要下载的改为True
# 同样的,第一个参数为数据存放路径
data_path = '../CIFAR_10_zhuanzhi/cifar10'
cifar = CIFAR10(data_path, train=True, download=False, transform=_task)
# 这里只是为了构造取样的角标,可根据自己的思路进行拓展
# 此处使用了前百分之八十作为训练集,百分之八十到九十的作为验证集,后百分之十为测试集
samples_count = len(cifar)
split_train = int(0.8 * samples_count)
split_valid = int(0.9 * samples_count)
index_list = list(range(samples_count))
train_idx, valid_idx, test_idx = index_list[:split_train], index_list[split_train:split_valid], index_list[split_valid:]
# 定义采样器
# create training and validation, test sampler
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
test_samlper = SubsetRandomSampler(test_idx )
# create iterator for train and valid, test dataset
trainloader = DataLoader(cifar, batch_size=256, sampler=train_sampler)
validloader = DataLoader(cifar, batch_size=256, sampler=valid_sampler)
testloader = DataLoader(cifar, batch_size=256, sampler=test_samlper )
# 网络设计
class Net(torch.nn.Module):
"""
网络设计了三个卷积层,一个池化层,一个全连接层
"""
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(3, 16, 3, padding=1)
self.conv2 = torch.nn.Conv2d(16, 32, 3, padding=1)
self.conv3 = torch.nn.Conv2d(32, 64, 3, padding=1)
self.pool = torch.nn.MaxPool2d(2, 2)
self.linear1 = torch.nn.Linear(1024, 512)
self.linear2 = torch.nn.Linear(512, 10)
# 前向传播
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = x.view(-1, 1024)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
return x
if __name__ == "__main__":
net = Net() # 实例化网络
loss_function = torch.nn.CrossEntropyLoss() # 定义交叉熵损失
# 定义优化算法
optimizer = optimizer.SGD(net.parameters(), lr=0.01, weight_decay=1e-6, momentum=0.9, nesterov=True)
# 迭代次数
for epoch in range(1, 31):
train_loss, valid_loss = [], []
net.train() # 训练开始
for data, target in trainloader:
optimizer.zero_grad() # 梯度置0
output = net(data)
loss = loss_function(output, target) # 计算损失
loss.backward() # 反向传播
optimizer.step() # 更新参数
train_loss.append(loss.item())
net.eval() # 验证开始
for data, target in validloader:
output = net(data)
loss = loss_function(output, target)
valid_loss.append(loss.item())
print("Epoch:{}, Training Loss:{}, Valid Loss:{}".format(epoch, np.mean(train_loss), np.mean(valid_loss)))
print("======= Training Finished ! =========")
print("Testing Begining ... ") # 模型测试
total = 0
correct = 0
for i, data_tuple in enumerate(testloader, 0):
data, labels = data_tuple
output = net(data)
_, preds_tensor = torch.max(output, 1)
total += labels.size(0)
correct += np.squeeze((preds_tensor == labels).sum().numpy())
print("Accuracy : {} %".format(correct/total))
实验结果
经验总结
1.激活函数的选择。
- 激活函数可选择sigmoid函数或者Relu函数,亲测使用Relu函数后,分类的正确率会高使用sigmoid函数很多;
- Relu函数的导入有两种:import torch.nn.functional as F, 然后F.relu(),还有一种是torch.nn.Relu() 两种方式实验结果没区别,但是推荐使用后者;因为前者是以函数的形式导入的,在模型保存时,F中相关参数会被释放,无法保存下去,而后者会保留参数。
2.预测结果的处理。
Pytorch预测的结果,返回的是一个Tensor,需要处理成数值才能进行准确率计算,.numpy()方法能将Tensor转化为数组,然后使用squeeze能够将数组转化为数值。
3. 数据加载。Pytorch是采用批量加载数据的,因此使用for循环迭代从采样器中加载数据,batch_size参数指定每次加载数据量的大小
4.注意维度。
- 网络设计中的维度。网络层次设计中,要谨记前一层的输出是后一层的输入,维度要对应的上。
- 全连接中的维度。全连接中要从特征图中选取特征,这些特征不是一维的,而全连接输出的结果是一维的,因此从特征图中选取特征作为全连接层输入前,需要将特征展开,例如:x = x.view(-1, 28*28)
基于Pytorch的MNIST手写体识别
代码实现
# coding = utf-8
import numpy as np
import torch
from torchvision import transforms
_task = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
[0.5], [0.5]
)
])
from torchvision.datasets import MNIST
# 数据集加载
mnist = MNIST('./data', download=False, train=True, transform=_task)
# 训练集和验证集划分
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
# create training and validation split
index_list = list(range(len(mnist)))
split_train = int(0.8*len(mnist))
split_valid = int(0.9*len(mnist))
train_idx, valid_idx, test_idx = index_list[:split_train], index_list[split_train:split_valid], index_list[split_valid:]
# create sampler objects using SubsetRandomSampler
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
test_sampler = SubsetRandomSampler(test_idx)
# create iterator objects for train and valid dataset
trainloader = DataLoader(mnist, batch_size=256, sampler=train_sampler)
validloader = DataLoader(mnist, batch_size=256, sampler=valid_sampler)
test_loader = DataLoader(mnist, batch_size=256, sampler=test_sampler )
# design for net
import torch.nn.functional as F
class NetModel(torch.nn.Module):
def __init__(self):
super(NetModel, self).__init__()
self.hidden = torch.nn.Linear(28*28, 300)
self.output = torch.nn.Linear(300, 10)
def forward(self, x):
x = x.view(-1, 28*28)
x = self.hidden(x)
x = F.relu(x)
x = self.output(x)
return x
if __name__ == "__main__":
net = NetModel()
from torch import optim
loss_function = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, weight_decay=1e-6, momentum=0.9, nesterov=True)
for epoch in range(1, 12):
train_loss, valid_loss = [], []
# net.train()
for data, target in trainloader:
optimizer.zero_grad()
# forward propagation
output = net(data)
loss = loss_function(output, target)
loss.backward()
optimizer.step()
train_loss.append(loss.item())
# net.eval()
for data, target in validloader:
output = net(data)
loss = loss_function(output, target)
valid_loss.append(loss.item())
print("Epoch:", epoch, "Training Loss:", np.mean(train_loss), "Valid Loss:", np.mean(valid_loss))
print("testing ... ")
total = 0
correct = 0
for i, test_data in enumerate(test_loader, 0):
data, label = test_data
output = net(data)
_, predict = torch.max(output.data, 1)
total += label.size(0)
correct += np.squeeze((predict == label).sum().numpy())
print("Accuracy:", (correct/total)*100, "%")
实验结果
经验总结
1.网络设计的使用只用了一个隐层,单隐层神经网络经过10词迭代,对手写体识别准确率高达97%!!简直变态啊!
2.loss.item()和loss.data[0]。好像新版本的pytorch放弃了loss.data[0]的表达方式。
3.手写体识别的图片是单通道图片,因此在transforms.Compose()中做标准化的时候,只需要指定一个值即可;而cifar中的图片是三通道的,因此需要指定三个参数。