今天介绍将树形结构存储在数据库中的第三种方法——终结表(原谅我这生硬的翻译。。)。

  继续用上一篇的栗子,下面是要存储的结构图:

mysql存储集合元素 mysql数据存储结构_删除节点

  需要回答的问题依旧是这样几个:

  1.查询小天的直接上司。

  2.查询老宋管理下的直属员工。

  3.查询小天的所有上司。

  4.查询老王管理的所有员工。

方案三、Closure Table 终结表法,保存每个节点与其各个子节点的关系,也就是记录以其为根节点的全部子节点信息。直接上代码就明白了:

  这里要创建两个表,一个表用来存储信息:

CREATE TABLE employees3(
eid INT,
ename VARCHAR(100),
position VARCHAR(100)
)

  一个表用来存储关系:

CREATE TABLE emp_relations(
root_id INT,
depth INT,
is_leaf TINYINT(1),
node_id INT
)


  这里的root_id用来存放以其为根节点的路径,node_id表示节点处的eid,depth表示根节点到该节点的深度,is_leaf表示该节点是否为叶子节点。

  接下来插入数据:

mysql存储集合元素 mysql数据存储结构_数据库_02

mysql存储集合元素 mysql数据存储结构_树形结构_03

mysql存储集合元素 mysql数据存储结构_mysql存储集合元素_04

  可以看出,这个关系表有点大,我们先来看看查询效果如何:

  1.查询小天的直接上司。

  这里只需要在关系表中找到node_id为小天id,depth为1的根节点id即可。

SELECT e2.ename BOSS FROM employees3 e1,employees3 e2,emp_relations rel 
WHERE e1.ename='小天' AND rel.node_id=e1.eid AND rel.depth=1 AND e2.eid=rel.root_id

  查询结果如下:

  

mysql存储集合元素 mysql数据存储结构_数据结构与算法_05

  2.查询老宋管理下的直属员工。

  思路差不多,只要查询root_id为老宋eid且深度为1的node_id即为其直接下属员工id

SELECT e1.eid,e1.ename 直接下属 FROM employees3 e1,employees3 e2,emp_relations rel 
WHERE e2.ename='老宋' AND rel.root_id=e2.eid AND rel.depth=1 AND e1.eid=rel.node_id

  查询结果如下:

  

mysql存储集合元素 mysql数据存储结构_树形结构_06

  3.查询小天的所有上司。

  只要在关系表中找到node_id为小天eid且depth大于0的root_id即可

SELECT e2.eid,e2.ename 上司 FROM employees3 e1,employees3 e2,emp_relations rel 
WHERE e1.ename='小天' AND rel.node_id=e1.eid AND rel.depth>0 AND e2.eid=rel.root_id

  查询结果如下:

  

mysql存储集合元素 mysql数据存储结构_数据库_07

  4.查询老王管理的所有员工。

  只要在关系表中查找root_id为老王eid,depth大于0的node_id即可

SELECT e1.eid,e1.ename 下属 FROM employees3 e1,employees3 e2,emp_relations rel 
WHERE e2.ename='老王' AND rel.root_id=e2.eid AND rel.depth>0 AND e1.eid=rel.node_id

  查询结果如下:

 

mysql存储集合元素 mysql数据存储结构_数据结构与算法_08

  我们可以发现,这四个查询的复杂程度是一样的,这就是这种存储方式的优点,而且可以让另一张表只存储跟节点紧密相关的信息,看起来更简洁。但缺点也显而易见,关系表会很庞大,当层次很深,结构很庞大的时候,关系表数据的增长会越来越快,相当于用空间效率来换取了查找上的时间效率。

  至此,树形结构在数据库中存储的三种方式就介绍完了,接下来对比一下三种方法:

  方案一:Adjacency List

  优点:只存储上级id,存储数据少,结构类似于单链表,在查询相邻节点的时候很方便。添加删除节点都比较简单。

  缺点:查询多级结构的时候会显得力不从心。

  适用场合:对多级查询需求不大的场景比较适用。

  方案二:Path Enumeration

  优点:查询多级结构的时候比较方便。查询相邻节点时也比较ok。增加或者删除节点的时候比较简单。

  缺点:需要存储的path值可能会很大,甚至超过设置的最大值范围,理论上无法无限扩张。

  适用场合:结构相对简单的场景比较适合。

  方案三:Closure Table

  优点:在查询树形结构的任意关系时都很方便。

  缺点:需要存储的数据量比较多,索引表需要的空间比较大,增加和删除节点相对麻烦。

  适用场合:纵向结构不是很深,增删操作不频繁的场景比较适用。

  当然,也可以再自己创新出其他更好的存储方案,如果有更好的想法,欢迎提出交流。

  至此三种方案全部介绍完毕,欢迎大家继续关注。