最近我们被客户要求撰写关于温度时间序列的研究报告,包括一些图形和统计输出。

相关视频:在Python和R语言中建立EWMA,ARIMA模型预测时间序列



至少有两种非平稳时间序列:具有趋势的时间序列和具有单位根的时间序列(称为单整时间序列)。单位根检验不能用来评估时间序列是否平稳。它们只能检测单整时间序列。季节性单位根也是如此。

视频:向量自回归VAR数学原理及R软件经济数据脉冲响应分析实例


【视频】向量自回归VAR数学原理及R语言软件经济数据脉冲响应分析实例


,时长12:01

这里考虑月平均温度数据。

> mon=read.table("temp.txt")

> plot(mon)

VAR回归模型python库 var回归结果_向量自回归

现在,我们可以计算所有年份的三个不同平稳性检验的p值

for(y in 1955:2013){
Temp[which(Year==y)]
as.numeric(pp.test(Zc)$p.value)	
as.numeric(kpss.test(Zc)$p.value)	
as.numeric(adf.test(Zc)$p.value)

从图像上看,如果红色表示非平稳,蓝色表示平稳,我们得到

polygon(y,col=CL[1+(D[y-1954,i]==1)*5],border=NA)}}

VAR回归模型python库 var回归结果_向量自回归_02

可以看到大部分序列在5%显著性水平下无法拒绝原检验说明序列非平稳。

冬天和夏天的温度是完全不同的。我们可以来可视化:

> plot(month,(tsm))
> lines(1:12,apply(M,2,mean

VAR回归模型python库 var回归结果_R语言_03

或者

plot(tsm)

VAR回归模型python库 var回归结果_VAR回归模型python库_04

> 3D(tsm)

VAR回归模型python库 var回归结果_VAR回归模型python库_05

看起来我们的时间序列是周期性的,因为每年都是季节性的。自相关函数:

VAR回归模型python库 var回归结果_VAR_06

现在的问题是有季节性单位根吗?这说明我们的模型应该是

VAR回归模型python库 var回归结果_VAR回归模型python库_07

如果我们忘记了自回归和移动平均分量,我们可以估计

VAR回归模型python库 var回归结果_VAR回归模型python库_08

如果有季节性单位根,那么应该接近1。

arima(x = tsm, order = c(0, 0, 0), seasonal = list(order = c(1, 0, 0), period = 12))

Coefficients:
        sar1  intercept
      0.9702     6.4566
s.e.  0.0071     2.1515

和1差不多。实际上,它不能太接近1。如果是的话,我们会收到一条错误信息…
为了说明模型,让我们考虑季度温度,

sp(1:4,N,theta=-50,col="yellow",shade=TRUE,

VAR回归模型python库 var回归结果_向量自回归_09

VAR季度温度模型

VAR模型描述在同一样本期间内的n个变量(内生变量)可以作为它们过去值的线性函数。

一个VAR(p)模型可以写成为:

VAR回归模型python库 var回归结果_向量自回归_10

其中:cn × 1常数向量,Ain × n矩阵。etn × 1误差向量,满足:

  1.  —误差项的均值为0
  2.  —误差项的协方差矩阵为Ω(一个n × 'n正定矩阵)
  3.  (对于所有不为0的k都满足)—误差项不存在自相关

其中A是4X4矩阵。这个模型很容易估计

model=VAR(df)

VAR回归模型python库 var回归结果_VAR回归模型python库_11

VAR回归模型python库 var回归结果_VAR回归模型python库_12

矩阵A在这里

> A=rbind(
+ coefficients(varresult$y1)[1:4],
+ coefficients(varresult$y2)[1:4],
+ coefficients(varresult$y3)[1:4],
+ coefficients(varresult$y4)[1:4])

VAR回归模型python库 var回归结果_R语言_13

由于这个多时间序列的平稳性与这个矩阵的特征值密切相关,我们来看一下,

> eigen(A)
[1]  0.35834830 -0.32824657 -0.14042175  0.09105836
> Mod(eigen(A)
[1] 0.35834830 0.32824657 0.14042175 0.09105836

周期自回归(PAR)模型

看起来这里不存在平稳性问题。有限制的模型称为周期自回归模型,被称为 

VAR回归模型python库 var回归结果_VAR_14

 模型

VAR回归模型python库 var回归结果_R语言_15

其中

VAR回归模型python库 var回归结果_arima_16

并且

VAR回归模型python库 var回归结果_VAR回归模型python库_17

这是一个VAR(1) 模型,因此

VAR回归模型python库 var回归结果_R语言_18

可以来估计这个模型

par(wts=tsq,  type="PAR", p=1)
> PAR(model)

VAR回归模型python库 var回归结果_向量自回归_19

特征方程为

VAR回归模型python库 var回归结果_arima_20

所以有一个(季节性的)单位根,如果

VAR回归模型python库 var回归结果_VAR_21

但在这里显然不是这样。可以进行 Canova Hansen(CH)检验。Canova Hansen(CH)检验主要用于检验季节差异并验证零假设,即季节性模式在采样期内是稳定的或随时间而变化。 

检验的输出在这里

> CH.test(tsm)

VAR回归模型python库 var回归结果_VAR回归模型python库_22

看起来我们拒绝了季节性单位根的假设。我提到以下检验程序

> nsdiffs(tsm, test="ch")
[1] 0

其中输出:“1”表示有一个季节单位根,“0”表示没有季节单位根。读起来很简单,不是吗?如果我们考虑每月数据的周期自回归模型,输出是

> model

VAR回归模型python库 var回归结果_R语言_23

所以,不管是什么检验,我们总是拒绝有季节性单位根的假设。这并不意味着我们的序列不能是周期性的!实际上,这个序列几乎是周期性的。但是没有单位根!所以所有这些都是有意义的。

为了确保我们得到的是正确的,考虑两个时间序列。第一个是周期序列(有非常小的噪声),第二个是单整序列。

> p1=Xp2=as.numeric(t(M))
> for(t in 13:length(M)){

+ p2[t]=Xp2[t-12]+rnorm(1,0,2)


VAR回归模型python库 var回归结果_VAR回归模型python库_24

VAR回归模型python库 var回归结果_VAR回归模型python库_25


查看

3D(tsp1)
3D(tsp2)

VAR回归模型python库 var回归结果_VAR_26


如果我们快速地看一下这些序列,我会说第一个没有单位根-即使它不是平稳的,但这是因为这个序列是周期性的-而第二个有单位根。如果我们看一下 Canova Hansen(CH)检验,我们会得到

> CH.test(tsp1)

VAR回归模型python库 var回归结果_VAR回归模型python库_27

VAR回归模型python库 var回归结果_VAR回归模型python库_28

考虑一下

> nsdiffs(tsp1, 12,test="ch")
[1] 0
> nsdiffs(tsp2, 12,test="ch")
[1] 1

这里我们有相同的结论。第一个没有单位根,但是第二个有单位根。用Osborn-Chui-Smith-Birchenhall检验

> nsdiffs(tsp1, 12,test="ocsb")
[1] 1
> nsdiffs(tsp2, 12,test="ocsb")
[1] 1

在我们的周期序列中也有一个单位根。

所以在这里,在低频上,我们拒绝在我们的温度序列中有单位根的假设,甚至是季节性的单位根。


VAR回归模型python库 var回归结果_R语言_29