1. 什么是Spark
spark是一个实现快速通用的集群计算平台,用来构建大型的,低延迟的数据分析应用程序,扩展了广泛使用的MapReduce计算模型,高效的支持更多计算模式,包括交互式查询和流处理,spark的一个主要特点是能够在内存中进行计算,及时依赖磁盘进行复杂的运算,Spark依然比MapReduce更加高效
2. Spark的四大特性
2.1 高效性
运行速度提升100倍
Apache Spark使用最先进的DAG调度程序,查询优化程序和物理执行引擎,实现批量和流式数据的高性能。
2.2 易用性
Spark支持Java、Python和Scala的API,还支持超过80种高级算法,使用户可以快速构建不同的应用。而且Spark支持交互式的Python和Scala的shell,可以非常方便地在这些shell中使用Spark集群来验证解决问题的方法。
2.3 通用性
Spark提供了统一的解决方案。Spark可以用于批处理、交互式查询(Spark SQL)、实时流处理(Spark Streaming)、机器学习(Spark MLlib)和图计算(GraphX)。这些不同类型的处理都可以在同一个应用中无缝使用。Spark统一的解决方案非常具有吸引力,毕竟任何公司都想用统一的平台去处理遇到的问题,减少开发和维护的人力成本和部署平台的物力成本。
2.4 兼容性
Spark可以非常方便地与其他的开源产品进行融合。比如,Spark可以使用Hadoop的YARN和Apache Mesos作为它的资源管理和调度器,器,并且可以处理所有Hadoop支持的数据,包括HDFS、HBase和Cassandra等。这对于已经部署Hadoop集群的用户特别重要,因为不需要做任何数据迁移就可以使用Spark的强大处理能力。Spark也可以不依赖于第三方的资源管理和调度器,它实现了Standalone作为其内置的资源管理和调度框架,这样进一步降低了Spark的使用门槛,使得所有人都可以非常容易地部署和使用Spark。此外,Spark还提供了在EC2上部署Standalone的Spark集群的工具。
3. Spark的组成
Spark组成(BDAS):全称伯克利数据分析栈,通过大规模集成算法、机器、人之间展现大数据应用的一个平台。也是处理大数据、云计算、通信的技术解决方案。
它的主要组件有:
- SparkCore:将分布式数据抽象为弹性分布式数据集(RDD),实现了应用任务调度、RPC、序列化和压缩,并为运行在其上的上层组件提供API。
- SparkSQL:Spark Sql 是Spark来操作结构化数据的程序包,可以让我使用SQL语句的方式来查询数据,Spark支持 多种数据源,包含Hive表,parquest以及JSON等内容。
- SparkStreaming: 是Spark提供的实时数据进行流式计算的组件。
- MLlib:提供常用机器学习算法的实现库。
- GraphX:提供一个分布式图计算框架,能高效进行图计算。
- BlinkDB:用于在海量数据上进行交互式SQL的近似查询引擎。
- Tachyon:以内存为中心高容错的的分布式文件系统。
4. Spark的安装和简单使用
4.1 安装Hadoop
添加hadoop用户
useradd -m hadoop -s /bin/bash
为hadoop用户增加管理员权限,方便部署
visudo
官网下载hadoop
进行解压
sudo tar -zxf hadoop-2.6.4.tar.gz -C /usr/local # 解压到/usr/local中
cd /usr/local/
sudo mv ./hadoop-2.6.0/ ./hadoop # 将文件夹名改为hadoop
sudo chown -R hadoop:hadoop ./hadoop
4.2 安装Spark
下载和hadoop同一版本的spark
sudo tar -zxf ~/spark-2.0.0/spark-2.0.0-bin-without-hadoop.tgz -C /usr/local/
cd /usr/local
sudo mv ./spark-1.6.0-bin-without-hadoop/ ./spark
sudo chown -R hadoop:hadoop ./spark # 此处的 hadoop为用户名
配置spark
cd /usr/local/spark
cp ./conf/spark-env.sh.template ./conf/spark-env.sh
编辑./conf/spark-env.sh template ./conf/spark-env.sh
cd /usr/local/spark
cp ./conf/spark-env.sh.template ./conf/spark-env.sh
编辑 ./conf/spark-env.sh(vim ./conf/spark-env.sh)
export SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoop classpath)