数据仓库的概念提出于20世纪80年代中期,20世纪90年代,数据仓库已从早起的探索阶段走向实用阶段。业界公认的数据仓库概念创始人W.H.Inmon在《BuildingtheDataWarehouse》一书中对数据仓库的定义是:“数据仓库是支持管理决策过程的、面向主题的、集成的、随时间变化的持久的数据集合”。
    联机分析处理的概念最早由关系数据库之父E.F.Codd于1993年提出的。Codd认为联机事务处理(OLTP)已不能满足终端用户对数据库查询分析的要求,SQL对大数据库的简单查询也不能满足用户分析的需求。用户的决策分析需要对关系数据库进行大量计算才能得到结果,而查询的结果并不能满足决策者提出的需求。因此,Codd提出了多维数据库和多维分析的概念,即OLAP。
    一.OLAP基本概念
    OLAP展现在用户面前的是一幅幅多维视图。
      维(Dimension):是人们观察数据的特定角度,是考虑问题时的一类属性,属性集合构成一个维(时间维、地理维等)。
      维的层次(Level):人们观察数据的某个特定角度(即某个维)还可以存在细节程度不同的各个描述方面(时间维:日期、月份、季度、年)。
      维的成员(Member):维的一个取值,是数据项在某维中位置的描述。(“某年某月某日”是在时间维上位置的描述)。
      度量(Measure):多维数组的取值。(2000年1月,上海,笔记本电脑,$100000)。
      OLAP的基本多维分析操作有钻取(Drill-up和Drill-down)、切片(Slice)和切块(Dice)、以及旋转(Pivot)等。
钻取:是改变维的层次,变换分析的粒度。它包括向下钻取(Drill-down)和向上钻取(Drill-up)/上卷(Roll-up)。Drill-up是在某一维上将低层次的细节数据概括到高层次的汇总数据,或者减少维数;而Drill-down则相反,它从汇总数据深入到细节数据进行观察或增加新维。
      切片和切块:是在一部分维上选定值后,关心度量数据在剩余维上的分布。如果剩余的维只有两个,则是切片;如果有三个或以上,则是切块。
      旋转(pivot):是变换维的方向,即在表格中重新安排维的放置(例如行列互换)。
     二.OLAP系统的体系结构和分类
     OLAP系统按照其存储器的数据存储格式可以分为关系OLAP(RelationalOLAP,简称ROLAP)、多维OLAP(MultidimensionalOLAP,简称MOLAP)和混合型OLAP(HybridOLAP,简称HOLAP)三种类型。