#!/usr/bin/env python
# -#-coding:utf-8 -*-
# author:魏兴源
# datetime:2021/10/20 20:14:13
# software:PyCharm
"""
模型1:Pytorch CNN 实现流程
1.图片数据处理,加载数据集
2.使得数据集可迭代(每次读取一个Batch)
3.创建模型类
4.初始化模型类
5.初始化损失类
6.训练模型
"""
# 1.加载库
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
# 2.定义超参数
BATCH_SIZE = 16 # 每批处理的数据
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 放在cuda或者cpu上训练
EPOCHS = 15 # 训练数据集的轮次
LEARNING_RATE = 1e-3
# 3.构建pipeline,对图像做处理
pipeline = transforms.Compose([
# 分辨率重置为256
transforms.Resize(53),
# 对加载的图像作归一化处理, 并裁剪为[224x224x3]大小的图像(因为这图片像素不一致直接统一)
transforms.CenterCrop(53),
# 将图片转成tensor
transforms.ToTensor(),
# 正则化,模型出现过拟合现象时,降低模型复杂度
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 图片路径(训练图片和测试图片的)
base_dir_train = 'data/train'
base_dir_test = 'data/val'
# 打印一下训练图片猫狗各多少张图片
print('train dogs total images : %d' % (len(os.listdir(base_dir_train + '\\dog'))))
print('train cats total images : %d' % (len(os.listdir(base_dir_train + '\\cat'))))
print('test cats total images : %d' % (len(os.listdir(base_dir_test + '\\cat'))))
print('test dogs total images : %d' % (len(os.listdir(base_dir_test + '\\dog'))))
# 4. 加载数据集
"""
训练集,猫是0,狗是1,ImageFolder方法自己分类的,关于ImageFolder详见:
"""
train_dataset = datasets.ImageFolder(root=base_dir_train, transform=pipeline)
print("train_dataset=" + repr(train_dataset[1][0].size()))
print("train_dataset.class_to_idx=" + repr(train_dataset.class_to_idx))
# 创建训练集的可迭代对象,一个batch_size地读取数据,shuffle设为True表示随机打乱顺序读取
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
# 测试集
test_dataset = datasets.ImageFolder(root=base_dir_test, transform=pipeline)
print(test_dataset)
print("test_dataset=" + repr(test_dataset[1][0].size()))
print("test_dataset.class_to_idx=" + repr(test_dataset.class_to_idx))
# 创建测试集的可迭代对象,一个batch_size地读取数据
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True)
# 获得一批测试集的数据
images, labels = next(iter(test_loader))
print(images.shape)
print(labels.shape)
# 5.定义函数,显示一批图片
def imShow(inp, title=None):
# tensor转成numpy,tranpose转成(通道数,长,宽)
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406]) # 均值
std = np.array([0.229, 0.224, 0.225]) # 标准差
inp = std * inp + mean
inp = np.clip(inp, 0, 1) # 像素值限制在0-1之间
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001)
# 网格显示
out = torchvision.utils.make_grid(images)
imShow(out)
class DNN_Model(nn.Module):
def __init__(self):
super(DNN_Model, self).__init__()
# 全连接层1
self.fc1 = nn.Linear(3 * 53 * 53, 1024) # input:16*53*53, output:1024
# 全连接层2
self.fc2 = nn.Linear(1024, 512) # input:1024, output:512
# 全连接层3
self.fc3 = nn.Linear(512, 2) # input:512, output:2
# dropout 层
self.dropout = nn.Dropout(p=0.2) # 因为数据较少,丢掉20%的神经元,防止过拟合
def forward(self, x):
x = x.view(x.size(0), -1)
# 全连接层1
x = F.relu(self.fc1(x))
x = self.dropout(x)
# 全连接层2
x = F.relu(self.fc2(x))
x = self.dropout(x)
# 全连接层3
x = F.relu(self.fc3(x))
return x
# 创建模型,并部署到device中
dnn_model = DNN_Model().to(DEVICE)
# 优化器
optimizer = optim.SGD(dnn_model.parameters(), lr=LEARNING_RATE, momentum=0.9)
# optimizer = optim.Adam(cnn_model.parameters(), lr=1e-3, betas=(0.9, 0.99))
# 损失函数,交叉熵损失函数
criterion = nn.CrossEntropyLoss()
# 把损失,准确度,迭代都记录出list,然后讲loss和准确度画出图像
train_loss_list = []
train_accuracy_list = []
train_iteration_list = []
test_loss_list = []
test_accuracy_list = []
test = test_iteration_list = []
iteration = 0
# for i, (imgs, labels) in enumerate(test_loader):
# # print("imgs=" + repr(imgs))
# print("labels=" + repr(labels))
# print("i=" + repr(i))
# 6.训练
for epoch in range(EPOCHS):
# 用来显示训练的loss correct等
train_correct = 0.0
train_total = 0.0
for i, (imgs, labels) in enumerate(train_loader):
# 声明训练,loss等只能在train mode下进行运算
dnn_model.train()
# 把训练的数据集合都扔到对应的设备去
imgs, labels = imgs.to(DEVICE), labels.to(DEVICE)
# 防止梯度爆炸,梯度清零
optimizer.zero_grad()
# 前向传播
dnn_model = dnn_model.cuda() # 这里要从cuda()中取得,不然前面都放在cuda后面放在cpu,会报错,报“不在同一个设备的错误"
output = dnn_model(imgs)
# 计算损失
loss = criterion(output, labels)
# 反向传播
loss.backward()
# 更新参数
optimizer.step()
# 计算训练时候的准确度
train_predict = torch.max(output.data, 1)[1]
if torch.cuda.is_available():
train_correct += (train_predict.cuda() == labels.cuda()).sum()
else:
train_correct += (train_predict == labels).sum()
train_total += labels.size(0)
accuracy = train_correct / train_total * 100.0
# 只画出最后一次epoch的
if (epoch + 1) == EPOCHS:
# 迭代计数器++
iteration += 1
train_accuracy_list.append(accuracy)
train_iteration_list.append(iteration)
train_loss_list.append(loss)
# 打印信息
print("Training---->Epoch :%d , Batch : %5d , Loss : %.8f,train_correct:%d,train_total:%d,accuracy:%.6f" % (
epoch + 1, i + 1, loss.item(), train_correct, train_total, accuracy))
# 每次训练完一个epoch后在测试运行一次
# ========================== 在测试集运行===============================================
print("==========================预测开始===========================")
dnn_model.eval()
# 验证accuracy
correct = 0.0
total = 0.0
# 迭代测试集 获取数据 预测
for j, (datas, targets) in enumerate(test_loader):
datas, targets = datas.to(DEVICE), targets.to(DEVICE)
# 模型预测
outputs = dnn_model(datas)
# 获取测试概率最大值的下标
predicted = torch.max(outputs.data, 1)[1]
# 统计计算测试集合
total += targets.size(0)
if torch.cuda.is_available():
correct += (predicted.cuda() == targets.cuda()).sum()
# print("predicted.cuda()=" + repr(predicted.cuda()))
# print("labels.cuda()=" + repr(targets.cuda()))
else:
correct += (predicted == targets).sum()
accuracy = correct / total * 100.0
test_accuracy_list.append(accuracy)
test_loss_list.append(loss.item())
test_iteration_list.append(epoch)
print(
"TEST--->loop : {}, Loss : {}, correct:{}, total:{}, Accuracy : {}".format(iteration + 1, loss.item(), correct,
total, accuracy))
# 可视化训练集loss
plt.figure(1)
plt.plot(train_iteration_list, train_loss_list)
plt.xlabel("number of iteration")
plt.ylabel("loss")
plt.title("DNN train loss")
plt.show()
# 可视化训练集accuracy
plt.figure(2)
plt.plot(train_iteration_list, train_accuracy_list)
plt.xlabel('number of iteration')
plt.ylabel('accuracy')
plt.title('DNN train accuracy')
plt.show()
# 可视化测试集loss
plt.figure(3)
plt.plot(test_iteration_list, test_loss_list)
plt.xlabel('number of iteration')
plt.ylabel('loss')
plt.title('DNN test loss')
plt.show()
# 可视化测试集accuracy
plt.figure(4)
plt.plot(test_iteration_list, test_accuracy_list)
plt.xlabel('number of iteration')
plt.ylabel('accuracy')
plt.title('DNN test accuracy')
plt.show()
pytorch VGG16猫狗分类 基于pytorch的猫狗分类
转载本文章为转载内容,我们尊重原作者对文章享有的著作权。如有内容错误或侵权问题,欢迎原作者联系我们进行内容更正或删除文章。
提问和评论都可以,用心的回复会被更多人看到
评论
发布评论
相关文章
-
kaggle 猫狗识别pytorch 基于pytorch的猫狗分类
文章目录前言一、定义自己的数据集二、开始训练猫狗数据三、辅助工具3.1 随机采样猫狗数据3.2 将猫狗数据集分成训练集、验证集 前言猫狗识别的数据在百度网盘: 链接:https://pan.baidu.com/s/1_jgubf2Ay47ONnhcJcQ-ng &nb
kaggle 猫狗识别pytorch 深度学习 python pytorch 数据