今天把这两天学习的kafka知识点做一下整理,供大家参考。

1  什么是kafka

Kafka是分布式发布-订阅消息系统,它最初是由LinkedIn公司开发的,之后成为Apache项目的一部分,Kafka是一个分布式,可划分的,冗余备份的持久性的日志服务,它主要用于处理流式数据。

2 kafka的特点

- 高吞吐量、低延迟:kafka每秒可以处理几十万条消息,它的延迟最低只有几毫秒,每个topic可以分多个partition, consumer group 对partition进行consume操作。

- 可扩展性:kafka集群支持热扩展

- 持久性、可靠性:消息被持久化到本地磁盘,并且支持数据备份防止数据丢失

- 容错性:允许集群中节点失败(若副本数量为n,则允许n-1个节点失败)

- 高并发:支持数千个客户端同时读写

3 相关名词

在一套kafka架构中有多个Producer,多个Broker,多个Consumer,每个Producer可以对应多个Topic,每个Consumer只能对应一个ConsumerGroup。

Broker

消息中间件处理节点,一个Kafka节点就是一个broker,一个或者多个Broker可以组成一个Kafka集群

Topic

主题,Kafka根据topic对消息进行归类,发布到Kafka集群的每条消息都需要指定一个topic

Producer

消息生产者,向Broker发送消息的客户端

Consumer

消息消费者,从Broker读取消息的客户端

ConsumerGroup

每个Consumer属于一个特定的Consumer Group,一条消息可以发送到多个不同的Consumer Group,但是一个Consumer Group中只能有一个Consumer能够消费该消息

Partition

物理上的概念,一个topic可以分为多个partition,每个partition内部是有序的

ISR、AR、OSR

ISR:In-Sync Replicas 副本同步队列
AR:Assigned Replicas 所有副本

ISR是由leader维护,follower从leader同步数据有一些延迟(包括延迟时间replica.lag.time.max.ms和延迟条数replica.lag.max.messages两个维度, 当前最新的版本0.10.x中只支持replica.lag.time.max.ms这个维度),任意一个超过阈值都会把follower剔除出ISR, 存入OSR(Outof-Sync Replicas)列表,新加入的follower也会先存放在OSR中。AR=ISR+OSR。

4 kafka如何实现几十万的高并发写入

Kafka是高吞吐低延迟的高并发、高性能的消息中间件,在大数据领域有极为广泛的运用。配置良好的Kafka集群甚至可以做到每秒几十万、上百万的超高并发写入。

持久化

Kafka对消息的存储和缓存依赖于文件系统,每次接收数据都会往磁盘上写,人们对于“磁盘速度慢”的普遍印象,使得人们对于持久化的架构能够提供强有力的性能产生怀疑。事实上,磁盘的速度比人们预期的要慢的多,也快得多,这取决于人们使用磁盘的方式。而且设计合理的磁盘结构通常可以和网络一样快。

Kafka就是基于页缓存技术 + 磁盘顺序写 技术实现了写入数据的超高性能。

页缓存技术 + 磁盘顺序写

afka 为了保证磁盘写入性能,首先Kafka是基于操作系统的页缓存来实现文件写入的。

操作系统本身有一层缓存,叫做page cache,是在内存里的缓存,我们也可以称之为os cache,意思就是操作系统自己管理的缓存。

你在写磁盘文件的时候,可以直接写入os cache 中,也就是仅仅写入内存中,接下来由操作系统自己决定什么时候把os cache 里的数据真的刷入到磁盘中。

Java kafka高并发消费消息 kafka高并发基于什么实现_数据

通过上图这种方式可以将磁盘文件的写性能提升很多,其实这种方式相当于写内存,不是在写磁盘

另外还有非常关键的一点,Kafka在写数据的时候是以磁盘顺序写的方式来落盘的,也就是说,仅仅将数据追加到文件的末尾(append),而不是在文件的随机位置来修改数据。

所以要保证每秒写入几万甚至几十万条数据的核心点,就是尽最大可能提升每条数据写入的性能,这样就可以在单位时间内写入更多的数据量,提升吞吐量。

零拷贝技术(zero-copy)

大家应该都知道,从Kafka里我们经常要消费数据,那么消费的时候实际上就是要从kafka的磁盘文件里读取某条数据然后发送给下游的消费者,如下图所示:

Java kafka高并发消费消息 kafka高并发基于什么实现_数据_02

如果Kafka以上面这种方式从磁盘中读取数据发送给下游的消费者,大概过程是:

先看看要读的数据在不在os cache中,如果不在的话就从磁盘文件里读取数据后放入os cache

接着从操作系统的os cache 里拷贝数据到应用程序进程的缓存里,再从应用程序进程的缓存里拷贝数据到操作系统层面的Socket缓存里,最后从Soket缓存里提取数据后发送到网卡,最后发送出去给下游消费者

Java kafka高并发消费消息 kafka高并发基于什么实现_缓存_03

从上图可以看出,这整个过程有两次没必要的拷贝

一次是从操作系统的cache里拷贝到应用进程的缓存里,接着又从应用程序缓存里拷贝回操作系统的Socket缓存里。而且为了进行这两次拷贝,中间还发生了好几次上下文切换,一会儿是应用程序在执行,一会儿上下文切换到操作系统来执行。所以这种方式来读取数据是比较消耗性能的。

Kafka 为了解决这个问题,在读数据的时候是引入零拷贝技术。也就是说,直接让操作系统的cache中的数据发送到网卡后传出给下游的消费者,中间跳过了两次拷贝数据的步骤,Socket缓存中仅仅会拷贝一个描述符过去,不会拷贝数据到Socket缓存。

Java kafka高并发消费消息 kafka高并发基于什么实现_数据_04

通过零拷贝技术,就不需要把os cache里的数据拷贝到应用缓存,再从应用缓存拷贝到Socket缓存了,两次拷贝都省略了,所以叫做零拷贝。对Socket缓存仅仅就是拷贝数据的描述符过去,然后数据就直接从os cache中发送到网卡上去了,这个过程大大的提升了数据消费时读取文件数据的性能。

而且大家会注意到,在从磁盘读数据的时候,会先看看os cache内存中是否有,如果有的话,其实读数据都是直接读内存的。如果kafka集群经过良好的调优,大家会发现大量的数据都是直接写入os cache中,然后读数据的时候也是从os cache中读。相当于是Kafka完全基于内存提供数据的写和读了,所以这个整体性能会极其的高。

总结

通过学习Kafka的优秀设计,我们了解了Kafka底层的页缓存技术的使用,磁盘顺序写的思路,以及零拷贝技术的运用,才能使得Kafka有那么高的性能,做到每秒几十万的吞吐量。

5 Topic和Partition

在Kafka中的每一条消息都有一个topic。一般来说在我们应用中产生不同类型的数据,都可以设置不同的主题。一个主题一般会有多个消息的订阅者,当生产者发布消息到某个主题时,订阅了这个主题的消费者都可以接收到生产者写入的新消息。

kafka为每个主题维护了分布式的分区(partition)日志文件,每个partition在kafka存储层面是append log。任何发布到此partition的消息都会被追加到log文件的尾部,在分区中的每条消息都会按照时间顺序分配到一个单调递增的顺序编号,也就是我们的offset,offset是一个long型的数字,我们通过这个offset可以确定一条在该partition下的唯一消息。在partition下面是保证了有序性,但是在topic下面没有保证有序性。
 

Java kafka高并发消费消息 kafka高并发基于什么实现_Java kafka高并发消费消息_05

6 kafka消息投递可靠性

一个消息如何算投递成功,Kafka提供了三种模式

1(默认)  数据发送到Kafka后,经过leader成功接收消息的的确认,就算是发送成功了。在这种情况下,如果leader宕机了,则会丢失数据。
0 生产者将数据发送出去就不管了,不去等待任何返回。这种情况下数据传输效率最高,但是数据可靠性确是最低的。
-1 producer需要等待ISR中的所有follower都确认接收到数据后才算一次发送完成,可靠性最高。当ISR中所有Replica都向Leader发送ACK时,leader才commit,这时候producer才能认为一个请求中的消息都commit了。

另有其他值时的说明:

当ack=2,表示producer写partition leader和其他任意一个follower成功的时候,broker就返回成功,无论其他的partition follower是否写成功。

7  kafka副本机制

每个partition可以在其他的kafka broker节点上存副本,以便某个kafka broker节点宕机不会影响这个kafka集群。存replica副本的方式是按照kafka broker的顺序存。replica副本数目不能大于kafka broker节点的数目,否则报错。这里的replica数其实就是partition的副本总数,其中包括一个leader,其他的就是copy副本。所以说kafka可以水平扩展,也就是扩展partition。

这样如果某个broker宕机,其实整个kafka内数据依然是完整的。但是,replica副本数越高,系统虽然越稳定,但是会带来资源和性能上的下降;replica副本少的话,也会造成系统丢数据的风险。

(1)怎样传送消息:producer先把message发送到partition leader,再由leader发送给其他partition follower。(如果让producer发送给每个replica那就太慢了)

  (2)在向Producer发送ACK前需要保证有多少个Replica已经收到该消息:根据ack配的个数而定

  (3)怎样处理某个Replica不工作的情况:如果这个不工作的partition replica不在ack列表中,就是producer在发送消息到partition leader上,partition leader向partition follower发送message没有响应而已,这个不会影响整个系统,也不会有什么问题。如果这个不工作的partition replica在ack列表中的话,producer发送的message的时候会等待这个不工作的partition replca写message成功,但是会等到time out,然后返回失败因为某个ack列表中的partition replica没有响应,此时kafka会自动的把这个不工作的partition replica从ack列表中移除,以后的producer发送message的时候就不会有这个ack列表下的这个不工作的partition replica了。 

  (4)怎样处理Failed Replica恢复回来的情况:如果这个partition replica之前不在ack列表中,那么启动后重新受Zookeeper管理即可,之后producer发送message的时候,partition leader会继续发送message到这个partition follower上。如果这个partition replica之前在ack列表中,此时重启后,需要把这个partition replica再手动加到ack列表中。(ack列表是手动添加的,出现某个不工作的partition replica的时候自动从ack列表中移除的)

Java kafka高并发消费消息 kafka高并发基于什么实现_kafka_06

当集群中新增2节点,Partition增加到6个时分布情况如下:

Java kafka高并发消费消息 kafka高并发基于什么实现_kafka_07

副本分配逻辑规则如下:

  • 在Kafka集群中,每个Broker都有均等分配Partition的Leader机会。
  • 上述图Broker Partition中,箭头指向为副本,以Partition-0为例:broker1中parition-0为Leader,Broker2中Partition-0为副本。
  • 上述图中每个Broker(按照BrokerId有序)依次分配主Partition,下一个Broker为副本,如此循环迭代分配,多副本都遵循此规则。

 

 

8 kafka分布式

kafka使用zookeeper来存储一些meta信息,并使用了zookeeper watch机制来发现meta信息的变更并作出相应的动作(比如consumer失效,触发负载均衡等)

Broker node registry: 当一个kafka broker启动后,首先会向zookeeper注册自己的节点信息(临时znode),同时当broker和zookeeper断开连接时,此znode也会被删除

Broker Topic Registry: 当一个broker启动时,会向zookeeper注册自己持有的topic和partitions信息,仍然是一个临时znode.

Consumer and Consumer group: 每个consumer客户端被创建时,会向zookeeper注册自己的信息;此作用主要是为了"负载均衡".一个group中的多个consumer可以交错的消费一个topic的所有partitions;简而言之,保证此topic的所有partitions都能被此group所消费,且消费时为了性能考虑,让partition相对均衡的分散到每个consumer上.

Consumer id Registry: 每个consumer都有一个唯一的ID(host:uuid,可以通过配置文件指定,也可以由系统生成),此id用来标记消费者信息.

Consumer offset Tracking: 用来跟踪每个consumer目前所消费的partition中最大的offset.此znode为持久节点,可以看出offset跟group_id有关,以表明当group中一个消费者失效,其他consumer可以继续消费.

Partition Owner registry: 用来标记partition正在被哪个consumer消费.临时znode。此节点表达了"一个partition"只能被group下一个consumer消费,同时当group下某个consumer失效,那么将会触发负载均衡(即:让partitions在多个consumer间均衡消费,接管那些"游离"的partitions)

当consumer启动时,所触发的操作:

A) 首先进行"Consumer id Registry";

B) 然后在"Consumer id Registry"节点下注册一个watch用来监听当前group中其他consumer的"leave"和"join";只要此znode path下节点列表变更,都会触发此group下consumer的负载均衡.(比如一个consumer失效,那么其他consumer接管partitions).

C) 在"Broker id registry"节点下,注册一个watch用来监听broker的存活情况;如果broker列表变更,将会触发所有的groups下的consumer重新balance.

 9 partiton中segment文件存储结构(高性能的日志存储)

kafka一个topic下面的所有消息都是以partition的方式分布式的存储在多个节点上。同时在kafka的机器上,每个Partition其实都会对应一个日志目录,在目录下面会对应多个日志分段(LogSegment)。

LogSegment文件由两部分组成,分别为“.index”文件和“.log”文件,分别表示为segment索引文件和数据文件。这两个文件的命令规则为:partition全局的第一个segment从0开始,后续每个segment文件名为上一个segment文件最后一条消息的offset值,数值大小为64位,20位数字字符长度,没有数字用0填充,如下,假设有1000条消息,每个LogSegment大小为100,下面展现了900-1000的索引和Log:

Java kafka高并发消费消息 kafka高并发基于什么实现_数据_08

由于kafka消息数据太大,如果全部建立索引,即占了空间又增加了耗时,所以kafka选择了稀疏索引的方式,这样的话索引可以直接进入内存,加快偏查询速度。
简单介绍一下如何读取数据,如果我们要读取第911条数据首先第一步,找到他是属于哪一段的,根据二分法查找到他属于的文件,找到0000900.index和00000900.log之后,然后去index中去查找 (911-900) =11这个索引或者小于11最近的索引,在这里通过二分法我们找到了索引是[10,1367]然后我们通过这条索引的物理位置1367,开始往后找,直到找到911这条数据。

上面讲的是如果要找某个offset的流程,但是我们大多数时候并不需要查找某个offset,只需要按照顺序读即可,而在顺序读中,操作系统会对内存和磁盘之间添加page cahe,也就是我们平常见到的预读操作,所以我们的顺序读操作时速度很快。但是kafka有个问题,如果分区过多,那么日志分段也会很多,写的时候由于是批量写,其实就会变成随机写了,随机I/O这个时候对性能影响很大。所以一般来说Kafka不能有太多的partition。针对这一点,RocketMQ把所有的日志都写在一个文件里面,就能变成顺序写,通过一定优化,读也能接近于顺序读。 

10 面试题

前面讲到的基本上都可以作为深入的面试题来问,下面列一些上面没有提到的

什么情况下一个 broker 会从 isr中踢出去

leader会维护一个与其基本保持同步的Replica列表,该列表称为ISR(in-sync Replica),每个Partition都会有一个ISR,而且是由leader动态维护 ,如果一个follower比一个leader落后太多,或者超过一定时间未发起数据复制请求,则leader将其重ISR中移除 。
kafka 为什么那么快

Cache Filesystem Cache PageCache缓存

顺序写 由于现代的操作系统提供了预读和写技术,磁盘的顺序写大多数情况下比随机写内存还要快。

Zero-copy 零拷技术减少拷贝次数

Batching of Messages 批量量处理。合并小的请求,然后以流的方式进行交互,直顶网络上限。

Pull 拉模式 使用拉模式进行消息的获取消费,与消费端处理能力相符。

kafka producer如何优化打入速度

增加线程

提高 batch.size

增加更多 producer 实例

增加 partition 数

设置 acks=-1 时,如果延迟增大:可以增大 num.replica.fetchers(follower 同步数据的线程数)来调解;

跨数据中心的传输:增加 socket 缓冲区设置以及 OS tcp 缓冲区设置。
 

kafka  unclean 配置代表啥,会对 spark streaming 消费有什么影响

unclean.leader.election.enable 为true的话,意味着非ISR集合的broker 也可以参与选举,这样有可能就会丢数据,spark streaming在消费过程中拿到的 end offset 会突然变小,导致 spark streaming job挂掉。如果unclean.leader.election.enable参数设置为true,就有可能发生数据丢失和数据不一致的情况,Kafka的可靠性就会降低;而如果unclean.leader.election.enable参数设置为false,Kafka的可用性就会降低。
 

如果leader crash时,ISR为空怎么办

kafka在Broker端提供了一个配置参数:unclean.leader.election,这个参数有两个值:
true(默认):允许不同步副本成为leader,由于不同步副本的消息较为滞后,此时成为leader,可能会出现消息不一致的情况。
false:不允许不同步副本成为leader,此时如果发生ISR列表为空,会一直等待旧leader恢复,降低了可用性。
 

kafka的message格式是什么样的

一个Kafka的Message由一个固定长度的header和一个变长的消息体body组成

header部分由一个字节的magic(文件格式)和四个字节的CRC32(用于判断body消息体是否正常)构成。

当magic的值为1的时候,会在magic和crc32之间多一个字节的数据:attributes(保存一些相关属性,

比如是否压缩、压缩格式等等);如果magic的值为0,那么不存在attributes属性

body是由N个字节构成的一个消息体,包含了具体的key/value消息
 

Kafka中的消息是否会丢失和重复消费?

要确定Kafka的消息是否丢失或重复,从两个方面分析入手:消息发送和消息消费。

1、消息发送

         Kafka消息发送有两种方式:同步(sync)和异步(async),默认是同步方式,可通过producer.type属性进行配置。Kafka通过配置request.required.acks属性来确认消息的生产:

0---表示不进行消息接收是否成功的确认;
1---表示当Leader接收成功时确认;
-1---表示Leader和Follower都接收成功时确认;
综上所述,有2种消息生产的情况,下面分情况来分析消息丢失的场景:

(1)acks=0,不和Kafka集群进行消息接收确认,则当网络异常、缓冲区满了等情况时,消息可能丢失;

(2)acks=1、同步模式下,只有Leader确认接收成功后但挂掉了,副本没有同步,数据可能丢失;

2、消息消费

Kafka消息消费有两个consumer接口,Low-level API和High-level API:

Low-level API:消费者自己维护offset等值,可以实现对Kafka的完全控制;

High-level API:封装了对parition和offset的管理,使用简单;

如果使用高级接口High-level API,可能存在一个问题就是当消息消费者从集群中把消息取出来、并提交了新的消息offset值后,还没来得及消费就挂掉了,那么下次再消费时之前没消费成功的消息就“诡异”的消失了;

解决办法:

        针对消息丢失:同步模式下,确认机制设置为-1,即让消息写入Leader和Follower之后再确认消息发送成功;异步模式下,为防止缓冲区满,可以在配置文件设置不限制阻塞超时时间,当缓冲区满时让生产者一直处于阻塞状态;

        针对消息重复:将消息的唯一标识保存到外部介质中,每次消费时判断是否处理过即可
 

消费者提交消费位移时提交的是当前消费到的最新消息的offset还是offset+1?

offset+1

kafka如何实现延迟队列?

Kafka并没有使用JDK自带的Timer或者DelayQueue来实现延迟的功能,而是基于时间轮自定义了一个用于实现延迟功能的定时器(SystemTimer)。JDK的Timer和DelayQueue插入和删除操作的平均时间复杂度为O(nlog(n)),并不能满足Kafka的高性能要求,而基于时间轮可以将插入和删除操作的时间复杂度都降为O(1)。时间轮的应用并非Kafka独有,其应用场景还有很多,在Netty、Akka、Quartz、Zookeeper等组件中都存在时间轮的踪影。

底层使用数组实现,数组中的每个元素可以存放一个TimerTaskList对象。TimerTaskList是一个环形双向链表,在其中的链表项TimerTaskEntry中封装了真正的定时任务TimerTask.

Kafka中到底是怎么推进时间的呢?Kafka中的定时器借助了JDK中的DelayQueue来协助推进时间轮。具体做法是对于每个使用到的TimerTaskList都会加入到DelayQueue中。Kafka中的TimingWheel专门用来执行插入和删除TimerTaskEntry的操作,而DelayQueue专门负责时间推进的任务。再试想一下,DelayQueue中的第一个超时任务列表的expiration为200ms,第二个超时任务为840ms,这里获取DelayQueue的队头只需要O(1)的时间复杂度。如果采用每秒定时推进,那么获取到第一个超时的任务列表时执行的200次推进中有199次属于“空推进”,而获取到第二个超时任务时有需要执行639次“空推进”,这样会无故空耗机器的性能资源,这里采用DelayQueue来辅助以少量空间换时间,从而做到了“精准推进”。Kafka中的定时器真可谓是“知人善用”,用TimingWheel做最擅长的任务添加和删除操作,而用DelayQueue做最擅长的时间推进工作,相辅相成。
 

Kafka中的事务是怎么实现的?

在说Kafka的事务之前,先要说一下Kafka中幂等的实现。幂等和事务是Kafka 0.11.0.0版本引入的两个特性,以此来实现EOS(exactly once semantics,精确一次处理语义)

幂等,简单地说就是对接口的多次调用所产生的结果和调用一次是一致的。生产者在进行重试的时候有可能会重复写入消息,而使用Kafka的幂等性功能之后就可以避免这种情况。

开启幂等性功能的方式很简单,只需要显式地将生产者客户端参数enable.idempotence设置为true即可(这个参数的默认值为false)。

Kafka是如何具体实现幂等的呢?Kafka为此引入了producer id(以下简称PID)和序列号(sequence number)这两个概念。每个新的生产者实例在初始化的时候都会被分配一个PID,这个PID对用户而言是完全透明的。
对于每个PID,消息发送到的每一个分区都有对应的序列号,这些序列号从0开始单调递增。生产者每发送一条消息就会将对应的序列号的值加1。

broker端会在内存中为每一对维护一个序列号。对于收到的每一条消息,只有当它的序列号的值(SN_new)比broker端中维护的对应的序列号的值(SN_old)大1(即SN_new = SN_old + 1)时,broker才会接收它。

如果SN_new< SN_old + 1,那么说明消息被重复写入,broker可以直接将其丢弃。如果SN_new> SN_old + 1,那么说明中间有数据尚未写入,出现了乱序,暗示可能有消息丢失,这个异常是一个严重的异常。

引入序列号来实现幂等也只是针对每一对而言的,也就是说,Kafka的幂等只能保证单个生产者会话(session)中单分区的幂等。幂等性不能跨多个分区运作,而事务可以弥补这个缺陷。

为了使用事务,应用程序必须提供唯一的transactionalId,这个transactionalId通过客户端参数transactional.id来显式设置。事务要求生产者开启幂等特性,因此通过将transactional.id参数设置为非空从而开启事务特性的同时需要将enable.idempotence设置为true(如果未显式设置,则KafkaProducer默认会将它的值设置为true),如果用户显式地将enable.idempotence设置为false,则会报出ConfigException的异常。

transactionalId与PID一一对应,两者之间所不同的是transactionalId由用户显式设置,而PID是由Kafka内部分配的。

从生产者的角度分析,通过事务,Kafka可以保证跨生产者会话的消息幂等发送,以及跨生产者会话的事务恢复。

前者表示具有相同transactionalId的新生产者实例被创建的时候,旧的且拥有相同transactionalId的生产者实例将不再工作。

后者指当某个生产者实例宕机后,新的生产者实例可以保证任何未完成的旧事务要么被提交(Commit),要么被中止(Abort),如此可以使新的生产者实例从一个正常的状态开始工作。