基础架构及术语

  话不多说,先看图,通过这张图我们来捋一捋相关的概念及之间的关系:

  

kafaka整体架构 kafka架构图 broker topic_kafaka整体架构

 

kafaka整体架构 kafka架构图 broker topic_kafka_02

 

 

如果看到这张图你很懵逼,木有关系!我们先来分析相关概念

Producer:Producer即生产者,消息的产生者,是消息的入口。
  kafka cluster
    Broker:Broker是kafka实例,每个服务器上有一个或多个kafka的实例,我们姑且认为每个broker对应一台服务器。每个kafka集群内的broker都有一个不重复的编号,如图中的broker-0、broker-1等……
    Topic:消息的主题,可以理解为消息的分类,kafka的数据就保存在topic。在每个broker上都可以创建多个topic。
    Partition:Topic的分区,每个topic可以有多个分区,分区的作用是做负载,提高kafka的吞吐量。同一个topic在不同的分区的数据是不重复的,partition的表现形式就是一个一个的文件夹!
    Replication:每一个分区都有多个副本,副本的作用是做备胎。当主分区(Leader)故障的时候会选择一个备胎(Follower)上位,成为Leader。在kafka中默认副本的最大数量是10个,且副本的数量不能大于Broker的数量,follower和leader绝对是在不同的机器,同一机器对同一个分区也只可能存放一个副本(包括自己)。
    Message:每一条发送的消息主体。
  Consumer:消费者,即消息的消费方,是消息的出口。
  Consumer Group:我们可以将多个消费组组成一个消费者组,在kafka的设计中同一个分区的数据只能被消费者组中的某一个消费者消费。同一个消费者组的消费者可以消费同一个topic的不同分区的数据,这也是为了提高kafka的吞吐量!
  Zookeeper:kafka集群依赖zookeeper来保存集群的的元信息,来保证系统的可用性。

Kafka通过Zookeeper管理集群配置,选举leader,以及在Consumer Group发生变化时进行rebalance。Producer使用push模式将消息发布到broker,Consumer使用pull模式从broker订阅并消费消息。

zookeeper是用来管理broker和consumer的。

broker:当创建broker之后,向zookeeper注册broker信息。Kafka Broker节点一起去Zookeeper上注册一个临时节点,因为只有一个Kafka Broker会注册成功,其他的都会失败,所以这个成功在Zookeeper上注册临时节点的这个Kafka Broker会成为Kafka Broker Controller,其他的Kafka broker叫Kafka Broker follower。(这个过程叫Controller在ZooKeeper注册Watch)。

Consumergroup:各个consumer(consumer 线程)可以组成一个组(Consumer group ),partition中的每个message只能被组(Consumer group )中的一个consumer(consumer 线程)消费,如果一个message可以被多个consumer(consumer 线程)消费的话,那么这些consumer必须在不同的组。

Kafka不支持一个partition中的message由两个或两个以上的同一个consumer group下的consumer thread来处理,除非再启动一个新的consumer group。所以如果想同时对一个topic做消费的话,启动多个consumer group就可以了,但是要注意的是,这里的多个consumer的消费都必须是顺序读取partition里面的message,新启动的consumer默认从partition队列最头端最新的地方开始阻塞的读message。它不能像AMQ那样可以多个BET作为consumer去互斥的(for update悲观锁)并发处理message,这是因为多个BET去消费一个Queue中的数据的时候,由于要保证不能多个线程拿同一条message,所以就需要行级别悲观所(for update),这就导致了consumer的性能下降,吞吐量不够。

而kafka为了保证吞吐量,只允许同一个consumer group下的一个consumer线程去访问一个partition。如果觉得效率不高的时候,可以加partition的数量来横向扩展,那么再加新的consumer thread去消费。如果想多个不同的业务都需要这个topic的数据,起多个consumer group就好了,大家都是顺序的读取message,offsite的值互不影响。这样没有锁竞争,充分发挥了横向的扩展性,吞吐量极高。这也就形成了分布式消费的概念。

当启动一个consumer group去消费一个topic的时候,无论topic里面有多个少个partition,无论我们consumer group里面配置了多少个consumer thread,这个consumer group下面的所有consumer thread一定会消费全部的partition;即便这个consumer group下只有一个consumer thread,那么这个consumer thread也会去消费所有的partition。因此,最优的设计就是,consumer group下的consumer thread的数量等于partition数量,这样效率是最高的。

Zookeeper会给每个consumer group一个ID,即同一份数据可以被不同的用户ID多次消费。因此这就是单播与多播的实现。以单个消费者还是以组别的方式去消费数据,由用户自己去定义。Zookeeper管理consumer的offset跟踪当前消费的offset。

再说明一点:zookeeper不管理producer,只是提供当前broker的相关信息,比如topic中的partition信息。在新版本的Kafka中,consumer也不需要zookeeper管理了。

下面用一张图看一下Kafka的分区:

kafaka整体架构 kafka架构图 broker topic_kafaka整体架构_03

工作流程分析

  上面介绍了kafka的基础架构及基本概念,不知道大家看完有没有对kafka有个大致印象,如果对还比较懵也没关系!我们接下来再结合上面的结构图分析kafka的工作流程,最后再回来整个梳理一遍我相信你会更有收获!

发送数据

永远的找leader,不会直接将数据写入follower!那leader怎么找呢?写入的流程又是什么样的呢?我们看下图:

  

kafaka整体架构 kafka架构图 broker topic_zookeeper_04

同一分区内的数据是有序的!写入示意图如下:

  

kafaka整体架构 kafka架构图 broker topic_数据_05

  上面说到数据会写入到不同的分区,那kafka为什么要做分区呢?相信大家应该也能猜到,分区的主要目的是:
  1、 方便扩展。因为一个topic可以有多个partition,所以我们可以通过扩展机器去轻松的应对日益增长的数据量。
  2、 提高并发。以partition为读写单位,可以多个消费者同时消费数据,提高了消息的处理效率。

  熟悉负载均衡的朋友应该知道,当我们向某个服务器发送请求的时候,服务端可能会对请求做一个负载,将流量分发到不同的服务器,那在kafka中,如果某个topic有多个partition,producer又怎么知道该将数据发往哪个partition呢?kafka中有几个原则:
  1、 partition在写入的时候可以指定需要写入的partition,如果有指定,则写入对应的partition。
  2、 如果没有指定partition,但是设置了数据的key,则会根据key的值hash出一个partition。
  3、 如果既没指定partition,又没有设置key,则会轮询选出一个partition。

  保证消息不丢失是一个消息队列中间件的基本保证,那producer在向kafka写入消息的时候,怎么保证消息不丢失呢?其实上面的写入流程图中有描述出来,那就是通过ACK应答机制!在生产者向队列写入数据的时候可以设置参数来确定是否确认kafka接收到数据,这个参数可设置的值为01all
  0代表producer往集群发送数据不需要等到集群的返回,不确保消息发送成功。安全性最低但是效率最高。
  1代表producer往集群发送数据只要leader应答就可以发送下一条,只确保leader发送成功。
  all代表producer往集群发送数据需要所有的follower都完成从leader的同步才会发送下一条,确保leader发送成功和所有的副本都完成备份。安全性最高,但是效率最低。

  最后要注意的是,如果往不存在的topic写数据,能不能写入成功呢?kafka会自动创建topic,分区和副本的数量根据默认配置都是1。

保存数据

  Producer将数据写入kafka后,集群就需要对数据进行保存了!kafka将数据保存在磁盘,可能在我们的一般的认知里,写入磁盘是比较耗时的操作,不适合这种高并发的组件。Kafka初始会单独开辟一块磁盘空间,顺序写入数据(效率比随机写入高)。

Partition 结构
  前面说过了每个topic都可以分为一个或多个partition,如果你觉得topic比较抽象,那partition就是比较具体的东西了!Partition在服务器上的表现形式就是一个一个的文件夹,每个partition的文件夹下面会有多组segment文件,每组segment文件又包含.index文件、.log文件、.timeindex文件(早期版本中没有)三个文件, log文件就实际是存储message的地方,而index和timeindex文件为索引文件,用于检索消息。

  

kafaka整体架构 kafka架构图 broker topic_数据_06

  如上图,这个partition有三组segment文件,每个log文件的大小是一样的,但是存储的message数量是不一定相等的(每条的message大小不一致)。文件的命名是以该segment最小offset来命名的,如000.index存储offset为0~368795的消息,kafka就是利用分段+索引的方式来解决查找效率的问题。

Message结构
上面说到log文件就实际是存储message的地方,我们在producer往kafka写入的也是一条一条的message,那存储在log中的message是什么样子的呢?消息主要包含消息体、消息大小、offset、压缩类型……等等!我们重点需要知道的是下面三个:
  1、 offset:offset是一个占8byte的有序id号,它可以唯一确定每条消息在parition内的位置!
  2、 消息大小:消息大小占用4byte,用于描述消息的大小。
  3、 消息体:消息体存放的是实际的消息数据(被压缩过),占用的空间根据具体的消息而不一样。

存储策略
  无论消息是否被消费,kafka都会保存所有的消息。那对于旧数据有什么删除策略呢?
  1、 基于时间,默认配置是168小时(7天)。
  2、 基于大小,默认配置是1073741824。
  需要注意的是,kafka读取特定消息的时间复杂度是O(1),所以这里删除过期的文件并不会提高kafka的性能!

消费数据

  消息存储在log文件后,消费者就可以进行消费了。与生产消息相同的是,消费者在拉取消息的时候也是找leader去拉取。

  多个消费者可以组成一个消费者组(consumer group),每个消费者组都有一个组id!同一个消费组者的消费者可以消费同一topic下不同分区的数据,但是不会组内多个消费者消费同一分区的数据!!!是不是有点绕。我们看下图:

  

kafaka整体架构 kafka架构图 broker topic_kafka_07

  图示是消费者组内的消费者小于partition数量的情况,所以会出现某个消费者消费多个partition数据的情况,消费的速度也就不及只处理一个partition的消费者的处理速度!如果是消费者组的消费者多于partition的数量,那会不会出现多个消费者消费同一个partition的数据呢?上面已经提到过不会出现这种情况!多出来的消费者不消费任何partition的数据。所以在实际的应用中,建议消费者组的consumer的数量与partition的数量一致
  在保存数据的小节里面,我们聊到了partition划分为多组segment,每个segment又包含.log、.index、.timeindex文件,存放的每条message包含offset、消息大小、消息体……我们多次提到segment和offset,查找消息的时候是怎么利用segment+offset配合查找的呢?假如现在需要查找一个offset为368801的message是什么样的过程呢?我们先看看下面的图:

kafaka整体架构 kafka架构图 broker topic_kafka_08

  1、 先找到offset的368801message所在的segment文件(利用二分法查找),这里找到的就是在第二个segment文件。
  2、 打开找到的segment中的.index文件(也就是368796.index文件,该文件起始偏移量为368796+1,我们要查找的offset为368801的message在该index内的偏移量为368796+5=368801,所以这里要查找的相对offset为5)。由于该文件采用的是稀疏索引的方式存储着相对offset及对应message物理偏移量的关系,所以直接找相对offset为5的索引找不到,这里同样利用二分法查找相对offset小于或者等于指定的相对offset的索引条目中最大的那个相对offset,所以找到的是相对offset为4的这个索引。
  3、 根据找到的相对offset为4的索引确定message存储的物理偏移位置为256。打开数据文件,从位置为256的那个地方开始顺序扫描直到找到offset为368801的那条Message。

segment+有序offset+稀疏索引+二分查找+顺序查找等多种手段来高效的查找数据!至此,消费者就能拿到需要处理的数据进行处理了。那每个消费者又是怎么记录自己消费的位置呢?在早期的版本中,消费者将消费到的offset维护zookeeper中,consumer每间隔一段时间上报一次,这里容易导致重复消费,且性能不好!在新的版本中消费者消费到的offset已经直接维护在kafk集群的__consumer_offsets这个topic中!