基于Transformer的中英文机器翻译

机器翻译是利用计算机将一种自然语言(源语言)转换为另一种自然语言(目标语言)的过程。本项目是机器翻译领域主流模型 Transformer 的 PaddlePaddle 实现,包含模型训练,预测以及使用自定义数据等内容。用户可以基于发布的内容搭建自己的翻译模型。


bert实现中英文机器翻译_paddlepaddle


  • 更多CV和NLP中的transformer模型(BERT、ERNIE、ViT、DeiT、Swin Transformer等)、深度学习资料,请参考:awesome-DeepLearning
  • 更多NLP应用模型(BERT系列等)请参考:PaddleNLP

2. Transformer 原理解读

Transformer 是论文 Attention Is All You Need 中提出的用以完成机器翻译(Machine Translation)等序列到序列(Seq2Seq)学习任务的一种全新网络结构,其完全使用注意力(Attention)机制来实现序列到序列的建模。



bert实现中英文机器翻译_paddle_02



图1:Transformer 网络结构图

相较于此前 Seq2Seq 模型中广泛使用的循环神经网络(Recurrent Neural Network, RNN),使用Self Attention进行输入序列到输出序列的变换主要具有以下优势:

  • 计算复杂度小
  • 特征维度为 d 、长度为 n 的序列,在 RNN 中计算复杂度为 O(n * d * d) (n 个时间步,每个时间步计算 d 维的矩阵向量乘法),在 Self-Attention 中计算复杂度为 O(n * n * d) (n 个时间步两两计算 d 维的向量点积或其他相关度函数),n 通常要小于 d 。
  • 计算并行度高
  • RNN 中当前时间步的计算要依赖前一个时间步的计算结果;Self-Attention 中各时间步的计算只依赖输入不依赖之前时间步输出,各时间步可以完全并行。
  • 容易学习长距离依赖(long-range dependencies)
  • RNN 中相距为 n 的两个位置间的关联需要 n 步才能建立;Self-Attention 中任何两个位置都直接相连;路径越短信号传播越容易。
    Transformer 中引入使用的基于 Self-Attention 的序列建模模块结构,已被广泛应用在 Bert 等语义表示模型中,取得了显著效果。

2.1 Multi-head Attention

import collections

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.fluid import layers

class MultiHeadAttention(nn.Layer):

    Cache = collections.namedtuple("Cache", ["k", "v"])
    StaticCache = collections.namedtuple("StaticCache", ["k", "v"])
    
    def __init__(self,
                 embed_dim,
                 num_heads,
                 dropout=0.,
                 kdim=None,
                 vdim=None,
                 need_weights=False,
                 weight_attr=None,
                 bias_attr=None):   
        super(MultiHeadAttention, self).__init__()
        # 输入的embedding维度
        self.embed_dim = embed_dim
        # key的维度
        self.kdim = kdim if kdim is not None else embed_dim
        # value的维度
        self.vdim = vdim if vdim is not None else embed_dim
        # head的数目
        self.num_heads = num_heads
        self.dropout = dropout
        self.need_weights = need_weights

        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
        # query
        self.q_proj = Linear(
            embed_dim, embed_dim, weight_attr, bias_attr=bias_attr)
        # key
        self.k_proj = Linear(
            self.kdim, embed_dim, weight_attr, bias_attr=bias_attr)
        # value
        self.v_proj = Linear(
            self.vdim, embed_dim, weight_attr, bias_attr=bias_attr)
        self.out_proj = Linear(
            embed_dim, embed_dim, weight_attr, bias_attr=bias_attr)

    def _prepare_qkv(self, query, key, value, cache=None):
        q = self.q_proj(query)
        q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
        q = tensor.transpose(x=q, perm=[0, 2, 1, 3])

        if isinstance(cache, self.StaticCache):
            # for encoder-decoder attention in inference and has cached
            k, v = cache.k, cache.v
        else:
            k, v = self.compute_kv(key, value)

        if isinstance(cache, self.Cache):
            # for decoder self-attention in inference
            k = tensor.concat([cache.k, k], axis=2)
            v = tensor.concat([cache.v, v], axis=2)

        return (q, k, v) if cache is None else (q, k, v, cache)

    def compute_kv(self, key, value):
        k = self.k_proj(key)
        v = self.v_proj(value)
        k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
        k = tensor.transpose(x=k, perm=[0, 2, 1, 3])
        v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
        v = tensor.transpose(x=v, perm=[0, 2, 1, 3])
        return k, v

    def forward(self, query, key=None, value=None, attn_mask=None, cache=None):
        key = query if key is None else key
        value = query if value is None else value
        # compute q ,k ,v
       
        q, k, v = self._prepare_qkv(query, key, value, cache)
       

        # scale dot product attention
        product = layers.matmul(
            x=q, y=k, transpose_y=True, alpha=self.head_dim**-0.5)
        if attn_mask is not None:
            # Support bool or int mask
            attn_mask = _convert_attention_mask(attn_mask, product.dtype)
            product = product + attn_mask
        weights = F.softmax(product)
        if self.dropout:
            weights = F.dropout(
                weights,
                self.dropout,
                training=self.training,
                mode="upscale_in_train")

        out = tensor.matmul(weights, v)

        # combine heads
        out = tensor.transpose(out, perm=[0, 2, 1, 3])
        out = tensor.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])

        # project to output
        out = self.out_proj(out)

        outs = [out]
        if self.need_weights:
            outs.append(weights)

        return out if len(outs) == 1 else tuple(outs)

2.2 Transformer Encoder

def _convert_attention_mask(attn_mask, dtype):
    if attn_mask is not None and attn_mask.dtype != dtype:
        attn_mask_dtype = convert_dtype(attn_mask.dtype)
        if attn_mask_dtype == 'bool' or 'int' in attn_mask_dtype:
            attn_mask = (paddle.cast(attn_mask, dtype) - 1.0) * 1e9
        else:
            attn_mask = paddle.cast(attn_mask, dtype)
    return attn_mask
def _convert_param_attr_to_list(param_attr, n):
    if isinstance(param_attr, (list, tuple)):
        assert len(param_attr) == n, (
            "length of param_attr should be %d when it is a list/tuple" % n)
        param_attrs = []
        for attr in param_attr:
            if isinstance(attr, bool):
                if attr:
                    param_attrs.append(ParamAttr._to_attr(None))
                else:
                    param_attrs.append(False)
            else:
                param_attrs.append(ParamAttr._to_attr(attr))
        # param_attrs = [ParamAttr._to_attr(attr) for attr in param_attr]
    elif isinstance(param_attr, bool):
        param_attrs = []
        if param_attr:
            param_attrs = [ParamAttr._to_attr(None) for i in range(n)]
        else:
            param_attrs = [False] * n
    else:
        param_attrs = []
        attr = ParamAttr._to_attr(param_attr)
        for i in range(n):
            attr_i = copy.deepcopy(attr)
            if attr.name:
                attr_i.name = attr_i.name + "_" + str(i)
            param_attrs.append(attr_i)
    return param_attrs
class TransformerEncoderLayer(nn.Layer):
    def __init__(self,
                 d_model,
                 nhead,
                 dim_feedforward,
                 dropout=0.1,
                 activation="relu",
                 attn_dropout=None,
                 act_dropout=None,
                 normalize_before=False,
                 weight_attr=None,
                 bias_attr=None):
        self._config = locals()
        self._config.pop("self")
        self._config.pop("__class__", None)  # py3

        super(TransformerEncoderLayer, self).__init__()
        attn_dropout = dropout if attn_dropout is None else attn_dropout
        act_dropout = dropout if act_dropout is None else act_dropout
        self.normalize_before = normalize_before

        weight_attrs = _convert_param_attr_to_list(weight_attr, 2)
        bias_attrs = _convert_param_attr_to_list(bias_attr, 2)

        # multi head attention
        self.self_attn = MultiHeadAttention(
            d_model,
            nhead,
            dropout=attn_dropout,
            weight_attr=weight_attrs[0],
            bias_attr=bias_attrs[0])
        
        # feed forward
        self.linear1 = Linear(
            d_model, dim_feedforward, weight_attrs[1], bias_attr=bias_attrs[1])
        self.dropout = Dropout(act_dropout, mode="upscale_in_train")
        self.linear2 = Linear(
            dim_feedforward, d_model, weight_attrs[1], bias_attr=bias_attrs[1])
        self.norm1 = LayerNorm(d_model)
        self.norm2 = LayerNorm(d_model)
        self.dropout1 = Dropout(dropout, mode="upscale_in_train")
        self.dropout2 = Dropout(dropout, mode="upscale_in_train")
        self.activation = getattr(F, activation)
    
    def forward(self, src, src_mask=None, cache=None):
        src_mask = _convert_attention_mask(src_mask, src.dtype)

        residual = src

        #  multi head attention 
        src = self.self_attn(src, src, src, src_mask)
        # 残差连接
        src = residual + self.dropout1(src)
        # Norm
        src = self.norm1(src)
        residual = src

        # feed forward
        src = self.linear2(self.dropout(self.activation(self.linear1(src))))
        # 残差连接
        src = residual + self.dropout2(src)
        # Norm
        src = self.norm2(src)
        return src

2.3 Transformer Decoder

class TransformerDecoderLayer(nn.Layer):
    def __init__(self,
                 d_model,
                 nhead,
                 dim_feedforward,
                 dropout=0.1,
                 activation="relu",
                 attn_dropout=None,
                 act_dropout=None,
                 normalize_before=False,
                 weight_attr=None,
                 bias_attr=None):
        self._config = locals()
        self._config.pop("self")
        self._config.pop("__class__", None)  # py3

        super(TransformerDecoderLayer, self).__init__()
        attn_dropout = dropout if attn_dropout is None else attn_dropout
        act_dropout = dropout if act_dropout is None else act_dropout
        self.normalize_before = normalize_before

        weight_attrs = _convert_param_attr_to_list(weight_attr, 3)
        bias_attrs = _convert_param_attr_to_list(bias_attr, 3)
        # multi head attention
        self.self_attn = MultiHeadAttention(
            d_model,
            nhead,
            dropout=attn_dropout,
            weight_attr=weight_attrs[0],
            bias_attr=bias_attrs[0])
        # encoder decoder attention
        self.cross_attn = MultiHeadAttention(
            d_model,
            nhead,
            dropout=attn_dropout,
            weight_attr=weight_attrs[1],
            bias_attr=bias_attrs[1])
        # feed forward
        self.linear1 = Linear(
            d_model, dim_feedforward, weight_attrs[2], bias_attr=bias_attrs[2])
        self.dropout = nn.Dropout(act_dropout, mode="upscale_in_train")
        self.linear2 = Linear(
            dim_feedforward, d_model, weight_attrs[2], bias_attr=bias_attrs[2])

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout, mode="upscale_in_train")
        self.dropout2 = nn.Dropout(dropout, mode="upscale_in_train")
        self.dropout3 = nn.Dropout(dropout, mode="upscale_in_train")
        self.activation = getattr(F, activation)
    
    def forward(self, tgt, memory, tgt_mask=None, memory_mask=None, cache=None):
        tgt_mask = _convert_attention_mask(tgt_mask, tgt.dtype)
        memory_mask = _convert_attention_mask(memory_mask, memory.dtype)

        residual = tgt
        if self.normalize_before:
            tgt = self.norm1(tgt)
        if cache is None:
            tgt = self.self_attn(tgt, tgt, tgt, tgt_mask, None)
        else:
            tgt, incremental_cache = self.self_attn(tgt, tgt, tgt, tgt_mask,
                                                    cache[0])
        # 残差连接
        tgt = residual + self.dropout1(tgt)
        # Norm
        if not self.normalize_before:
            tgt = self.norm1(tgt)

        residual = tgt
        if self.normalize_before:
            tgt = self.norm2(tgt)
        if cache is None:
            tgt = self.cross_attn(tgt, memory, memory, memory_mask, None)
        else:
            tgt, static_cache = self.cross_attn(tgt, memory, memory,
                                                memory_mask, cache[1])
        # 残差连接
        tgt = residual + self.dropout2(tgt) 
        # Norm
        if not self.normalize_before:
            tgt = self.norm2(tgt)

        residual = tgt
        if self.normalize_before:
            tgt = self.norm3(tgt)
        tgt = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        # 残差连接
        tgt = residual + self.dropout3(tgt)
        # Norm
        if not self.normalize_before:
            tgt = self.norm3(tgt)
        return tgt if cache is None else (tgt, (incremental_cache,
                                                static_cache))

3、案例实践

3.1 环境介绍

  • PaddlePaddle框架,AI Studio平台已经默认安装最新版2.0。
  • PaddleNLP,深度兼容框架2.0,是飞桨框架2.0在NLP领域的最佳实践。
# 安装依赖
# !pip install -r requirements.txt
!pip install subword_nmt==0.3.7
!pip install attrdict==2.0.1
!pip install paddlenlp==2.0.0rc22
import os
import time
import yaml
import logging
import argparse
import numpy as np
from pprint import pprint
from attrdict import AttrDict
import jieba
from tqdm import tqdm
import os
import xml.etree.ElementTree as ET
from functools import partial

import paddle
import paddle.distributed as dist
from paddle.io import DataLoader
from paddlenlp.data import Vocab, Pad
from paddlenlp.data.sampler import SamplerHelper
from paddlenlp.datasets import load_dataset
from paddlenlp.transformers import TransformerModel, InferTransformerModel, CrossEntropyCriterion, position_encoding_init
from paddlenlp.utils.log import logger
!tar -xvf data/data92803/2015-01.tgz
!tar -xvf 2015-01/texts/zh/en/zh-en.tgz
en_dir='zh-en/train.tags.zh-en.en'
zn_dir='zh-en/train.tags.zh-en.zh'
def filter_out_html(filename1,filename2):
	f1 = open(filename1,'r')
	f2 = open(filename2,'r')

	data1 = f1.readlines()
	data2 = f2.readlines()
	assert len(data1)==len(data2)#用codecs会导致报错不知道为什么
	fw1 = open(filename1+".txt",'w')
	fw2 = open(filename2+".txt",'w')

	for line1,line2 in tqdm(zip(data1,data2)):
		line1 = line1.strip()
		line2 = line2.strip()
		if line1 and line2:
			if '<' not in line1 and '>' not in line1 and '<' not in line2 and '>' not in line2:
				fw1.write(line1+"\n")
				fw2.write(line2+"\n")
	fw1.close()
	f1.close()
	fw2.close()
	f2.close()

	return filename1+".txt",filename2+".txt"
filter_out_html(en_dir,zn_dir)
tree_source_dev = ET.parse('zh-en/IWSLT15.TED.dev2010.zh-en.zh.xml')
tree_source_dev = [seg.text for seg in tree_source_dev.iter('seg')]

tree_target_dev = ET.parse('zh-en/IWSLT15.TED.dev2010.zh-en.en.xml')
tree_target_dev = [seg.text for seg in tree_target_dev.iter('seg')]
print(tree_source_dev[:2])
print(tree_target_dev[:2])
with open('dev_cn.txt','w') as f:
    for item in tree_source_dev:
        f.write(item+'\n')

with open('dev_en.txt','w') as f:
    for item in tree_target_dev:
        f.write(item+'\n')
tree_source_test = ET.parse('zh-en/IWSLT15.TED.tst2011.zh-en.zh.xml')
tree_source_test = [seg.text for seg in tree_source_test.iter('seg')]

tree_target_test = ET.parse('zh-en/IWSLT15.TED.tst2011.zh-en.en.xml')
tree_target_test = [seg.text for seg in tree_target_test.iter('seg')]
with open('test_cn.txt','w') as f:
    for item in tree_source_test:
        f.write(item+'\n')

with open('test_en.txt','w') as f:
    for item in tree_target_test:
        f.write(item+'\n')

3.2 数据部分

3.2.1 数据集介绍

数据集使用的是IWSLT 2015,数据集的下载地址为: https://wit3.fbk.eu/2015-01
链接里面还有其他更多的数据,欢迎大家尝试更多的数据哈,效果会更好。

3.2.2 数据预处理

中文需要Jieba+BPE,英文需要BPE

# 中文Jieba分词
def jieba_cut(in_file,out_file):
    out_f = open(out_file,'w',encoding='utf8')
    with open(in_file,'r',encoding='utf8') as f:
        for line in f.readlines():
            line = line.strip()
            if not line:
                continue
            cut_line = ' '.join(jieba.cut(line))
            out_f.write(cut_line+'\n')
    out_f.close()
zn_dir='zh-en/train.tags.zh-en.zh.txt'
cut_zn_dir='zh-en/train.tags.zh-en.zh.cut.txt'
jieba_cut(zn_dir,cut_zn_dir)
zn_dir='dev_cn.txt'
cut_zn_dir='dev_cn.cut.txt'
jieba_cut(zn_dir,cut_zn_dir)
zn_dir='dev_cn.txt'
cut_zn_dir='dev_cn.cut.txt'
jieba_cut(zn_dir,cut_zn_dir)
zn_dir='test_cn.txt'
cut_zn_dir='test_cn.cut.txt'
jieba_cut(zn_dir,cut_zn_dir)

3.3 BPE分词

3.3.1 bpe学习

print('generate the training data')
!subword-nmt learn-bpe -s 32000 < zh-en/train.tags.zh-en.zh.cut.txt > zh-en/bpe.ch.32000
!subword-nmt learn-bpe -s 32000 < zh-en/train.tags.zh-en.en.txt > zh-en/bpe.en.32000

2.3.2 bpe分词

!subword-nmt apply-bpe -c zh-en/bpe.ch.32000 < zh-en/train.tags.zh-en.zh.cut.txt > zh-en/train.ch.bpe
!subword-nmt apply-bpe -c zh-en/bpe.ch.32000 < dev_cn.cut.txt > zh-en/dev.ch.bpe
!subword-nmt apply-bpe -c zh-en/bpe.ch.32000 < test_cn.cut.txt > zh-en/test.ch.bpe
!subword-nmt apply-bpe -c zh-en/bpe.en.32000 < zh-en/train.tags.zh-en.en.txt > zh-en/train.en.bpe
!subword-nmt apply-bpe -c zh-en/bpe.en.32000 < dev_en.txt > zh-en/dev.en.bpe
!subword-nmt apply-bpe -c zh-en/bpe.en.32000 < test_en.txt > zh-en/test.en.bpe
!subword-nmt  get-vocab -i zh-en/train.ch.bpe -o zh-en/temp
special_token=['<s>','<e>','<unk>']
cn_vocab=[]
with open('zh-en/temp') as f:
    for item in f.readlines():
        words=item.strip().split()
        cn_vocab.append(words[0])

with open('zh-en/vocab.ch.src','w') as f:
    for item in special_token:
        f.write(item+'\n')
    for item in cn_vocab:
        f.write(item+'\n')
!subword-nmt  get-vocab -i zh-en/train.en.bpe -o zh-en/temp
eng_vocab=[]
with open('zh-en/temp') as f:
    for item in f.readlines():
        words=item.strip().split()
        eng_vocab.append(words[0])
        
with open('zh-en/vocab.en.tgt','w') as f:
    for item in special_token:
        f.write(item+'\n')
    for item in eng_vocab:
        f.write(item+'\n')

3.4 数据集划分

cn_data=[]
with open('zh-en/train.ch.bpe') as f:
    for item in f.readlines():
        words=item.strip()
        cn_data.append(words)
en_data=[]
with open('zh-en/train.en.bpe') as f:
    for item in f.readlines():
        words=item.strip()
        en_data.append(words)
print(cn_data[:10])
print(en_data[:10])

3.5 构造dataloader

下面的create_data_loader函数用于创建训练集、验证集所需要的DataLoader对象,
create_infer_loader函数用于创建预测集所需要的DataLoader对象,
DataLoader对象用于产生一个个batch的数据。下面对函数中调用的paddlenlp内置函数作简单说明:

  • paddlenlp.data.Vocab.load_vocabulary:Vocab词表类,集合了一系列文本token与ids之间映射的一系列方法,支持从文件、字典、json等一系方式构建词表
  • paddlenlp.datasets.load_dataset:从本地文件创建数据集时,推荐根据本地数据集的格式给出读取function并传入 load_dataset() 中创建数据集
  • paddlenlp.data.sampler.SamplerHelper:构建用于DataLoader的可迭代采样器,它包含shuffle、sort、batch、shard等一系列方法,方便用户灵活使用
  • paddlenlp.data.Pad:padding 操作

具体可参考PaddleNLP的文档

def min_max_filer(data, max_len, min_len=0):
    # 1 for special tokens.
    data_min_len = min(len(data[0]), len(data[1])) + 1
    data_max_len = max(len(data[0]), len(data[1])) + 1
    return (data_min_len >= min_len) and (data_max_len <= max_len)


def read(src_path, tgt_path, is_predict=False):
    if is_predict:
        with open(src_path, 'r', encoding='utf8') as src_f:
            for src_line in src_f.readlines():
                src_line = src_line.strip()
                if not src_line:
                    continue
                yield {'src':src_line, 'tgt':''}
    else:
        with open(src_path, 'r', encoding='utf8') as src_f, open(tgt_path, 'r', encoding='utf8') as tgt_f:
            for src_line, tgt_line in zip(src_f.readlines(), tgt_f.readlines()):
                src_line = src_line.strip()
                if not src_line:
                    continue
                tgt_line = tgt_line.strip()
                if not tgt_line:
                    continue
                yield {'src':src_line, 'tgt':tgt_line}
# 创建训练集、验证集的dataloader
def create_data_loader(args):
    train_dataset = load_dataset(read, src_path=args.training_file.split(',')[0], tgt_path=args.training_file.split(',')[1], lazy=False)
    dev_dataset = load_dataset(read, src_path=args.training_file.split(',')[0], tgt_path=args.training_file.split(',')[1], lazy=False)
    print('load src vocab')
    print( args.src_vocab_fpath)
    src_vocab = Vocab.load_vocabulary(
        args.src_vocab_fpath,
        bos_token=args.special_token[0],
        eos_token=args.special_token[1],
        unk_token=args.special_token[2])
    print('load trg vocab')
    print(args.trg_vocab_fpath)
    trg_vocab = Vocab.load_vocabulary(
        args.trg_vocab_fpath,
        bos_token=args.special_token[0],
        eos_token=args.special_token[1],
        unk_token=args.special_token[2])
    print('padding')
    padding_vocab = (
        lambda x: (x + args.pad_factor - 1) // args.pad_factor * args.pad_factor
    )
    args.src_vocab_size = padding_vocab(len(src_vocab))
    args.trg_vocab_size = padding_vocab(len(trg_vocab))
    print('convert example')
    def convert_samples(sample):
        source = sample['src'].split()
        target = sample['tgt'].split()

        source = src_vocab.to_indices(source)
        target = trg_vocab.to_indices(target)

        return source, target

    data_loaders = [(None)] * 2
    print('dataset loop')
    for i, dataset in enumerate([train_dataset, dev_dataset]):
        dataset = dataset.map(convert_samples, lazy=False).filter(
            partial(
                min_max_filer, max_len=args.max_length))

        sampler = SamplerHelper(dataset)

        if args.sort_type == SortType.GLOBAL:
            src_key = (lambda x, data_source: len(data_source[x][0]) + 1)
            trg_key = (lambda x, data_source: len(data_source[x][1]) + 1)
            # Sort twice
            sampler = sampler.sort(key=trg_key).sort(key=src_key)
        else:
            if args.shuffle:
                sampler = sampler.shuffle(seed=args.shuffle_seed)
            max_key = (lambda x, data_source: max(len(data_source[x][0]), len(data_source[x][1])) + 1)
            if args.sort_type == SortType.POOL:
                sampler = sampler.sort(key=max_key, buffer_size=args.pool_size)

        batch_size_fn = lambda new, count, sofar, data_source: max(sofar, len(data_source[new][0]) + 1,
                                                                   len(data_source[new][1]) + 1)
        batch_sampler = sampler.batch(
            batch_size=args.batch_size,
            drop_last=False,
            batch_size_fn=batch_size_fn,
            key=lambda size_so_far, minibatch_len: size_so_far * minibatch_len)

        if args.shuffle_batch:
            batch_sampler = batch_sampler.shuffle(seed=args.shuffle_seed)

        if i == 0:
            batch_sampler = batch_sampler.shard()

        data_loader = DataLoader(
            dataset=dataset,
            batch_sampler=batch_sampler,
            collate_fn=partial(
                prepare_train_input,
                bos_idx=args.bos_idx,
                eos_idx=args.eos_idx,
                pad_idx=args.bos_idx),
            num_workers=2,
            return_list=True)
        data_loaders[i] = (data_loader)
    return data_loaders

class SortType(object):
    GLOBAL = 'global'
    POOL = 'pool'
    NONE = "none"

3.6 模型训练

PaddleNLP提供Transformer API供调用:

  • paddlenlp.transformers.TransformerModel:Transformer模型的实现
  • paddlenlp.transformers.InferTransformerModel:Transformer模型用于生成
  • paddlenlp.transformers.CrossEntropyCriterion:计算交叉熵损失
  • paddlenlp.transformers.position_encoding_init:Transformer 位置编码的初始化

运行do_train函数,
do_train函数中,配置优化器、损失函数,以及评价指标(困惑度)。

# 读入参数
yaml_file = './transformer.base.yaml'
with open(yaml_file, 'rt') as f:
    args = AttrDict(yaml.safe_load(f))
    pprint(args)
print(args.training_file.split(','))
def prepare_train_input(insts, bos_idx, eos_idx, pad_idx):
    """
    Put all padded data needed by training into a list.
    """
    word_pad = Pad(pad_idx)
    src_word = word_pad([inst[0] + [eos_idx] for inst in insts])
    trg_word = word_pad([[bos_idx] + inst[1] for inst in insts])
    lbl_word = np.expand_dims(
        word_pad([inst[1] + [eos_idx] for inst in insts]), axis=2)

    data_inputs = [src_word, trg_word, lbl_word]

    return data_inputs
# Define data loader
(train_loader), (eval_loader) = create_data_loader(args)
for input_data in train_loader:
    (src_word, trg_word, lbl_word) = input_data
    print(src_word)
    print(trg_word)
    print(lbl_word)
    break
def do_train(args,train_loader,eval_loader):
    if args.use_gpu:
        rank = dist.get_rank()
        trainer_count = dist.get_world_size()
    else:
        rank = 0
        trainer_count = 1
        paddle.set_device("cpu")

    if trainer_count > 1:
        dist.init_parallel_env()

    # Set seed for CE
    random_seed = eval(str(args.random_seed))
    if random_seed is not None:
        paddle.seed(random_seed)



    # Define model
    transformer = TransformerModel(
        src_vocab_size=args.src_vocab_size,
        trg_vocab_size=args.trg_vocab_size,
        max_length=args.max_length + 1,
        n_layer=args.n_layer,
        n_head=args.n_head,
        d_model=args.d_model,
        d_inner_hid=args.d_inner_hid,
        dropout=args.dropout,
        weight_sharing=args.weight_sharing,
        bos_id=args.bos_idx,
        eos_id=args.eos_idx)

    # Define loss
    criterion = CrossEntropyCriterion(args.label_smooth_eps, args.bos_idx)

    scheduler = paddle.optimizer.lr.NoamDecay(
        args.d_model, args.warmup_steps, args.learning_rate, last_epoch=0)

    # Define optimizer
    optimizer = paddle.optimizer.Adam(
        learning_rate=scheduler,
        beta1=args.beta1,
        beta2=args.beta2,
        epsilon=float(args.eps),
        parameters=transformer.parameters())

    # Init from some checkpoint, to resume the previous training
    if args.init_from_checkpoint:
        model_dict = paddle.load(
            os.path.join(args.init_from_checkpoint, "transformer.pdparams"))
        opt_dict = paddle.load(
            os.path.join(args.init_from_checkpoint, "transformer.pdopt"))
        transformer.set_state_dict(model_dict)
        optimizer.set_state_dict(opt_dict)
        print("loaded from checkpoint.")
    # Init from some pretrain models, to better solve the current task
    if args.init_from_pretrain_model:
        model_dict = paddle.load(
            os.path.join(args.init_from_pretrain_model, "transformer.pdparams"))
        transformer.set_state_dict(model_dict)
        print("loaded from pre-trained model.")

    if trainer_count > 1:
        transformer = paddle.DataParallel(transformer)

    # The best cross-entropy value with label smoothing
    loss_normalizer = -(
        (1. - args.label_smooth_eps) * np.log(
            (1. - args.label_smooth_eps)) + args.label_smooth_eps *
        np.log(args.label_smooth_eps / (args.trg_vocab_size - 1) + 1e-20))

    ce_time = []
    ce_ppl = []
    step_idx = 0

    # Train loop
    for pass_id in range(args.epoch):
        epoch_start = time.time()

        batch_id = 0
        batch_start = time.time()
        for input_data in train_loader:
            (src_word, trg_word, lbl_word) = input_data

            logits = transformer(src_word=src_word, trg_word=trg_word)

            sum_cost, avg_cost, token_num = criterion(logits, lbl_word)

            avg_cost.backward()

            optimizer.step()
            optimizer.clear_grad()

            if step_idx % args.print_step == 0 and rank == 0:
                total_avg_cost = avg_cost.numpy()

                if step_idx == 0:
                    logger.info(
                        "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                        "normalized loss: %f, ppl: %f " %
                        (step_idx, pass_id, batch_id, total_avg_cost,
                         total_avg_cost - loss_normalizer,
                         np.exp([min(total_avg_cost, 100)])))
                else:
                    train_avg_batch_cost = args.print_step / (
                        time.time() - batch_start)
                    logger.info(
                        "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                        "normalized loss: %f, ppl: %f, avg_speed: %.2f step/sec"
                        % (
                            step_idx,
                            pass_id,
                            batch_id,
                            total_avg_cost,
                            total_avg_cost - loss_normalizer,
                            np.exp([min(total_avg_cost, 100)]),
                            train_avg_batch_cost, ))
                batch_start = time.time()

            if step_idx % args.save_step == 0 and step_idx != 0:
                # Validation
                transformer.eval()
                total_sum_cost = 0
                total_token_num = 0
                with paddle.no_grad():
                    for input_data in eval_loader:
                        (src_word, trg_word, lbl_word) = input_data
                        logits = transformer(
                            src_word=src_word, trg_word=trg_word)
                        sum_cost, avg_cost, token_num = criterion(logits,
                                                                  lbl_word)
                        total_sum_cost += sum_cost.numpy()
                        total_token_num += token_num.numpy()
                        total_avg_cost = total_sum_cost / total_token_num
                    logger.info("validation, step_idx: %d, avg loss: %f, "
                                "normalized loss: %f, ppl: %f" %
                                (step_idx, total_avg_cost,
                                 total_avg_cost - loss_normalizer,
                                 np.exp([min(total_avg_cost, 100)])))
                transformer.train()

                if args.save_model and rank == 0:
                    model_dir = os.path.join(args.save_model,
                                             "step_" + str(step_idx))
                    if not os.path.exists(model_dir):
                        os.makedirs(model_dir)
                    paddle.save(transformer.state_dict(),
                                os.path.join(model_dir, "transformer.pdparams"))
                    paddle.save(optimizer.state_dict(),
                                os.path.join(model_dir, "transformer.pdopt"))
                batch_start = time.time()
            batch_id += 1
            step_idx += 1
            scheduler.step()

        train_epoch_cost = time.time() - epoch_start
        ce_time.append(train_epoch_cost)
        logger.info("train epoch: %d, epoch_cost: %.5f s" %
                    (pass_id, train_epoch_cost))

    if args.save_model and rank == 0:
        model_dir = os.path.join(args.save_model, "step_final")
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
        paddle.save(transformer.state_dict(),
                    os.path.join(model_dir, "transformer.pdparams"))
        paddle.save(optimizer.state_dict(),
                    os.path.join(model_dir, "transformer.pdopt"))
print('training the model')
do_train(args,train_loader,eval_loader)

3.7 模型预测

# 创建测试集的dataloader
def create_infer_loader(args):
    dataset = load_dataset(read, src_path=args.predict_file, tgt_path=None, is_predict=True, lazy=False)

    src_vocab = Vocab.load_vocabulary(
        args.src_vocab_fpath,
        bos_token=args.special_token[0],
        eos_token=args.special_token[1],
        unk_token=args.special_token[2])
    trg_vocab = Vocab.load_vocabulary(
        args.trg_vocab_fpath,
        bos_token=args.special_token[0],
        eos_token=args.special_token[1],
        unk_token=args.special_token[2])

    padding_vocab = (
        lambda x: (x + args.pad_factor - 1) // args.pad_factor * args.pad_factor
    )
    args.src_vocab_size = padding_vocab(len(src_vocab))
    args.trg_vocab_size = padding_vocab(len(trg_vocab))

    def convert_samples(sample):
        source = sample['src'].split()
        target = sample['tgt'].split()

        source = src_vocab.to_indices(source)
        target = trg_vocab.to_indices(target)

        return source, target

    dataset = dataset.map(convert_samples, lazy=False)

    batch_sampler = SamplerHelper(dataset).batch(
        batch_size=args.infer_batch_size, drop_last=False)

    data_loader = DataLoader(
        dataset=dataset,
        batch_sampler=batch_sampler,
        collate_fn=partial(
            prepare_infer_input,
            bos_idx=args.bos_idx,
            eos_idx=args.eos_idx,
            pad_idx=args.bos_idx),
        num_workers=2,
        return_list=True)
    return data_loader, trg_vocab.to_tokens


def prepare_infer_input(insts, bos_idx, eos_idx, pad_idx):
    """
    Put all padded data needed by beam search decoder into a list.
    """
    word_pad = Pad(pad_idx)
    src_word = word_pad([inst[0] + [eos_idx] for inst in insts])

    return [src_word, ]
def post_process_seq(seq, bos_idx, eos_idx, output_bos=False, output_eos=False):
    """
    Post-process the decoded sequence.
    """
    eos_pos = len(seq) - 1
    for i, idx in enumerate(seq):
        if idx == eos_idx:
            eos_pos = i
            break
    seq = [
        idx for idx in seq[:eos_pos + 1]
        if (output_bos or idx != bos_idx) and (output_eos or idx != eos_idx)
    ]
    return seq


def do_predict(args):
    if args.use_gpu:
        place = "gpu:0"
    else:
        place = "cpu"

    paddle.set_device(place)

    # Define data loader
    test_loader, to_tokens = create_infer_loader(args)

    # Define model
    transformer = InferTransformerModel(
        src_vocab_size=args.src_vocab_size,
        trg_vocab_size=args.trg_vocab_size,
        max_length=args.max_length + 1,
        n_layer=args.n_layer,
        n_head=args.n_head,
        d_model=args.d_model,
        d_inner_hid=args.d_inner_hid,
        dropout=args.dropout,
        weight_sharing=args.weight_sharing,
        bos_id=args.bos_idx,
        eos_id=args.eos_idx,
        beam_size=args.beam_size,
        max_out_len=args.max_out_len)

    # Load the trained model
    # assert args.init_from_params, (
    #     "Please set init_from_params to load the infer model.")
    init_from_params='trained_models/step_final'
    model_dict = paddle.load(
        os.path.join(init_from_params, "transformer.pdparams"))

    # To avoid a longer length than training, reset the size of position
    # encoding to max_length
    model_dict["encoder.pos_encoder.weight"] = position_encoding_init(
        args.max_length + 1, args.d_model)
    model_dict["decoder.pos_encoder.weight"] = position_encoding_init(
        args.max_length + 1, args.d_model)
    transformer.load_dict(model_dict)

    # Set evaluate mode
    transformer.eval()

    f = open(args.output_file, "w")
    with paddle.no_grad():
        for (src_word, ) in test_loader:
            finished_seq = transformer(src_word=src_word)
            finished_seq = finished_seq.numpy().transpose([0, 2, 1])
            for ins in finished_seq:
                for beam_idx, beam in enumerate(ins):
                    if beam_idx >= args.n_best:
                        break
                    id_list = post_process_seq(beam, args.bos_idx, args.eos_idx)
                    word_list = to_tokens(id_list)
                    sequence = " ".join(word_list) + "\n"
                    f.write(sequence)
    f.close()
do_predict(args)

3.8 模型评估

预测结果中每行输出是对应行输入的得分最高的翻译,对于使用 BPE 的数据,预测出的翻译结果也将是 BPE 表示的数据,要还原成原始的数据(这里指 tokenize 后的数据)才能进行正确的评估

!git clone https://github.com.cnpmjs.org/moses-smt/mosesdecoder.git temp
!mv temp/.git mosesdecoder/.git
!rm -rf temp
# 还原 predict.txt 中的预测结果为 tokenize 后的数据
! sed -r 's/(@@ )|(@@ ?$)//g' ./predict.txt > ./predict.tok.txt

# ! git clone https://github.com/moses-smt/mosesdecoder.git
# 计算multi-bleu
!perl mosesdecoder/scripts/generic/multi-bleu.perl test_en.txt < ./predict.txt

4. 更多PaddleEdu信息内容

1. PaddleEdu一站式深度学习在线百科awesome-DeepLearning中还有其他的能力,大家可以敬请期待:

  • 深度学习入门课


bert实现中英文机器翻译_自然语言处理_03


  • 深度学习百问


bert实现中英文机器翻译_bert实现中英文机器翻译_04


  • 特色课


bert实现中英文机器翻译_paddle_05


  • 产业实践


bert实现中英文机器翻译_paddlepaddle_06