实例代码:

#include <iostream>
#include <string>
//#include <stdlib.h>
#include <cstdlib>
#include <vector>
#include <array>

using namespace std;

namespace _nmsp1
{
	//stl的组成部分:
	//容器,迭代器,算法(函数),分配器(分配内存),其他(适配器,仿函数/函数对象等等)

	//一:容器的分类 
	//vector,list,map,容器是保存数据的
	//STL中的容器分为三大类:
	//(1)顺序容器(sequence Containers):放进去在哪里,这个元素就排在哪里。比如array,vector,deque,list,forward_list;
	//(2)关联容器(Associative Containers):树,哈希表,元素是 键/值 对 ,特别适合做查找。你能控制插入的内容,但一般来讲你不能控制插入的位置。 set,multiset,map,multimap;
	//hash_set,hash_map,hash_multiset,hash_multimap;	 
	//(3)无序容器(Unordered Containers):c++11里推出:元素的位置不重要,重要的是这个元素是否在这个容器里边。
	//无序容器他也属于一种关联容器;哈希表来实现;
	//unordered_set,unordered_multiset,unordered_map,unordered_multimap;
	//哈希表:蓝色块 叫 篮子(桶子);
	//官方有一句话:c++标准并没有规定任何容器必须使用任何特定的实现手段。




	void func()
	{

		return;
	}
}
namespace _nmsp2
{
	//二:容器的说明和应用事项例
	//(2.1)array:是个顺序容器,其实是个数组,内存空间是连续的,大小是固定的;你刚开始申请的时候是多大,他就是多大,不能再增加他的大小了;

	void func()
	{
		//包含5个元素的数组
		array<string, 5> mystring = { "I", "Love1Love2Love3Love4Love5Love6Love7", "China" };
		cout << "myString.size() = " << mystring.size() << endl; //5
		mystring[0] = "It is very long~~~~~~~~~~~~~long~~~~~~~~~~~~long";
		mystring[4] = "It is very long~~~~~~~~~~~~~long~~~~~~~~~~~~long";
		cout << "sizeof(string) = " << sizeof(string) << endl;
		for (size_t i = 0; i < mystring.size(); ++i)
		{
			const char *p = mystring[i].c_str();
			cout << "-----------------begin---------------------" << endl;
			cout << "数组元素值= " << p << endl;
			printf("对象地址=%p\n", &mystring[i]);
			printf("指向的字符串地址=%p\n", p);
			cout << "-----------------end---------------------" << endl;
		}

		const char *p1 = "Love1Love2Love3Love4Love5Love6Love7";
		const char *p2 = "Love1Love2Love3Love4Love5Love6Love7";
		printf("p1地址=%p\n", p1);
		printf("p2地址=%p\n", p2);






	}
}
namespace _nmsp3
{
	//(2.2)vector
	//a)往屁股后边增加元素和从屁股删除元素都很快; push_back();
	//b)往中间插入元素可能导致很多后续的元素要执行重新构造,析构。效率会非常之低
	//c)查找速度应该不会太快;

	//vector容器内存也是挨着的, vector容器有一个 “空间”的概念,每一个空间可以装一个元素;
	//容器里有多少个元素可以用size()来看,而这个容器里有多少空间,可以 用capacity();
	//capacity()一定不会小于size();vector容器中空间的数量一定不会小于元素的数量;
	//用reverse可以预留空间,前提是你预先知道这个容器最多会容纳多少个元素;可以大量的提高程序的运行效率;


	class A
	{
	public:
		int m_i;
		A(int tmpv) :m_i(tmpv)//构造函数
		{
			cout << "A::A()构造函数执行" << endl;
		}
		A(const A& tmpA)
		{
			m_i = tmpA.m_i;
			cout << "A::A()拷贝构造函数执行" << endl;
		}
		~A()
		{
			cout << "A::~A()析构函数执行" << endl;
		}
	};

	void func()
	{
		vector<A> myveca;
		cout << "myveca.capacity() = " << myveca.capacity() << endl;
		cout << "myveca.size() = " << myveca.size() << endl;

		myveca.reserve(10); //预留10个空间

		cout << "myveca.capacity() = " << myveca.capacity() << endl;
		cout << "myveca.size() = " << myveca.size() << endl;


		for (int i = 0; i < 5; ++i)
		{
			cout << "-----------begin-------------" << endl;
			cout << "容器插入元素之前size=" << myveca.size() << endl;
			cout << "容器插入元素之前capacity=" << myveca.capacity() << endl;

			myveca.push_back(A(i));

			cout << "容器插入元素之后size=" << myveca.size() << endl;
			cout << "容器插入元素之后capacity=" << myveca.capacity() << endl;
			cout << "-----------end---------------" << endl;
		}

		cout << "--------------------------------------------------------" << endl;
		for (int i = 0; i < 5; ++i)
		{
			printf("下标为%d的元素的地址是%p,m_i=%d\n", i, &myveca[i], myveca[i].m_i);
		}
		//printf("myveca地址是%p\n", &myveca);
		cout << "---------------------------------删除一个元素看看-----------------------" << endl;
		int icount = 0;
		for (auto pos = myveca.begin(); pos != myveca.end(); ++pos)
		{
			icount++;
			if (icount == 2)
			{
				myveca.erase(pos);
				break;
			}
		}
		for (int i = 0; i < 4; ++i)
		{
			printf("下标为%d的元素的地址是%p,m_i=%d\n", i, &myveca[i], myveca[i].m_i);
		}

		{
			cout << "---------------------------------插入一个元素看看-----------------------" << endl;
			int icount = 0;

			for (auto pos = myveca.begin(); pos != myveca.end(); ++pos)
			{
				icount++;
				if (icount == 2)
				{
					myveca.insert(pos, A(10));
					break;
				}
			}
		}
		for (int i = 0; i < 5; ++i)
		{
			printf("下标为%d的元素的地址是%p,m_i=%d\n", i, &myveca[i], myveca[i].m_i);
		}

	}
}

int main()
{
	//_nmsp1::func();	
	//_nmsp2::func();
	_nmsp3::func();
	return 1;
}