老代码:同样可用,就是保存视频时会闪烁,现在评论区出现了一个解决方案,欢迎大家尝试(拉到文末查看)。

 YOLOv3保存检测视频完整项目地址: https://github.com/RongSong1993/YOLOv3_SaveVideo

        最近一段时间配置运行了下YOLO3网络,官方项目地址:https://pjreddie.com/darknet/yolo/,整个配置过程比较简单,按照上面那个网站操作就可以了。但是官网项目在测试本地视频或通过摄像头(webcam)获得的视频时,默认是没有保存运行结果的,因此这里主要讲的是如何保存yolo3运行检测的视频结果。有问题可以评论留言,算法没仔细研究,主要是讲述操作流程。

         假设你的项目路径为./darknet,需要改动的主要有两个文件,分别是位于./darknet/src/路径下的demo.c和image.c文件。

(1)首先在image.c文件中添加save_video函数的定义,代码及截图位置如下:

void save_video(image p, CvVideoWriter *mVideoWriter)
{
    image copy = copy_image(p);
    if(p.c == 3) rgbgr_image(copy);
    int x,y,k;

    IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c);
    int step = disp->widthStep;
    for(y = 0; y < p.h; ++y){
        for(x = 0; x < p.w; ++x){
            for(k= 0; k < p.c; ++k){
                disp->imageData[y*step + x*p.c + k] = (unsigned char)(get_pixel(copy,x,y,k)*255);
            }
        }
    }
    cvWriteFrame(mVideoWriter,disp);
    cvReleaseImage(&disp);
    free_image(copy);
}

 

对应位置截图如下:

 

YOLO目标检测PYQT系统源码 yolov3目标检测实战_yolo3保存检测视频

       (2) 然后更改demo.c文件代码,由于改动内容有多处,因此这里帖是完整的demo.c文件代码,每一组//*********rs20180415***********之间代码就是新添加的代码内容,可自行对比,包括设置你输出检测视频的名称和帧率。

#include "network.h"
#include "detection_layer.h"
#include "region_layer.h"
#include "cost_layer.h"
#include "utils.h"
#include "parser.h"
#include "box.h"
#include "image.h"
#include "demo.h"
#include <sys/time.h>

#define DEMO 1

//*********rs20180415***********
#define SAVEVIDEO
//*********rs20180415***********

#ifdef OPENCV

//*********rs20180415***********
#ifdef SAVEVIDEO
   static CvVideoWriter *mVideoWriter;
#endif
//*********rs20180415***********

static char **demo_names;
static image **demo_alphabet;
static int demo_classes;
static network *net;
static image buff [3];
static image buff_letter[3];
static int buff_index = 0;
static CvCapture * cap;
static IplImage  * ipl;
static float fps = 0;
static float demo_thresh = 0;
static float demo_hier = .5;
static int running = 0;

static int demo_frame = 3;
static int demo_index = 0;
static float **predictions;
static float *avg;
static int demo_done = 0;
static int demo_total = 0;
double demo_time;

detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num);

int size_network(network *net)
{
    int i;
    int count = 0;
    for(i = 0; i < net->n; ++i){
        layer l = net->layers[i];
        if(l.type == YOLO || l.type == REGION || l.type == DETECTION){
            count += l.outputs;
        }
    }
    return count;
}

void remember_network(network *net)
{
    int i;
    int count = 0;
    for(i = 0; i < net->n; ++i){
        layer l = net->layers[i];
        if(l.type == YOLO || l.type == REGION || l.type == DETECTION){
            memcpy(predictions[demo_index] + count, net->layers[i].output, sizeof(float) * l.outputs);
            count += l.outputs;
        }
    }
}

detection *avg_predictions(network *net, int *nboxes)
{
    int i, j;
    int count = 0;
    fill_cpu(demo_total, 0, avg, 1);
    for(j = 0; j < demo_frame; ++j){
        axpy_cpu(demo_total, 1./demo_frame, predictions[j], 1, avg, 1);
    }
    for(i = 0; i < net->n; ++i){
        layer l = net->layers[i];
        if(l.type == YOLO || l.type == REGION || l.type == DETECTION){
            memcpy(l.output, avg + count, sizeof(float) * l.outputs);
            count += l.outputs;
        }
    }
    detection *dets = get_network_boxes(net, buff[0].w, buff[0].h, demo_thresh, demo_hier, 0, 1, nboxes);
    return dets;
}

void *detect_in_thread(void *ptr)
{
    running = 1;
    float nms = .4;

    layer l = net->layers[net->n-1];
    float *X = buff_letter[(buff_index+2)%3].data;
    network_predict(net, X);

    /*
       if(l.type == DETECTION){
       get_detection_boxes(l, 1, 1, demo_thresh, probs, boxes, 0);
       } else */
    remember_network(net);
    detection *dets = 0;
    int nboxes = 0;
    dets = avg_predictions(net, &nboxes);


    /*
       int i,j;
       box zero = {0};
       int classes = l.classes;
       for(i = 0; i < demo_detections; ++i){
       avg[i].objectness = 0;
       avg[i].bbox = zero;
       memset(avg[i].prob, 0, classes*sizeof(float));
       for(j = 0; j < demo_frame; ++j){
       axpy_cpu(classes, 1./demo_frame, dets[j][i].prob, 1, avg[i].prob, 1);
       avg[i].objectness += dets[j][i].objectness * 1./demo_frame;
       avg[i].bbox.x += dets[j][i].bbox.x * 1./demo_frame;
       avg[i].bbox.y += dets[j][i].bbox.y * 1./demo_frame;
       avg[i].bbox.w += dets[j][i].bbox.w * 1./demo_frame;
       avg[i].bbox.h += dets[j][i].bbox.h * 1./demo_frame;
       }
    //copy_cpu(classes, dets[0][i].prob, 1, avg[i].prob, 1);
    //avg[i].objectness = dets[0][i].objectness;
    }
     */


 if (nms > 0) do_nms_obj(dets, nboxes, l.classes, nms);

    printf("\033[2J");
    printf("\033[1;1H");
    printf("\nFPS:%.1f\n",fps);
    printf("Objects:\n\n");
    image display = buff[(buff_index+2) % 3];
    draw_detections(display, dets, nboxes, demo_thresh, demo_names, demo_alphabet, demo_classes);
    free_detections(dets, nboxes);

    demo_index = (demo_index + 1)%demo_frame;
    running = 0;
    return 0;
}

void *fetch_in_thread(void *ptr)
{
    int status = fill_image_from_stream(cap, buff[buff_index]);
    letterbox_image_into(buff[buff_index], net->w, net->h, buff_letter[buff_index]);
    if(status == 0) demo_done = 1;
    return 0;
}

void *display_in_thread(void *ptr)
{
    show_image_cv(buff[(buff_index + 1)%3], "Demo", ipl);
    int c = cvWaitKey(1);
    if (c != -1) c = c%256;
    if (c == 27) {
        demo_done = 1;
        return 0;
    } else if (c == 82) {
        demo_thresh += .02;
    } else if (c == 84) {
        demo_thresh -= .02;
        if(demo_thresh <= .02) demo_thresh = .02;
    } else if (c == 83) {
        demo_hier += .02;
    } else if (c == 81) {
        demo_hier -= .02;
        if(demo_hier <= .0) demo_hier = .0;
    }
    return 0;
}

void *display_loop(void *ptr)
{
    while(1){
        display_in_thread(0);
    }
}

void *detect_loop(void *ptr)
{
    while(1){
        detect_in_thread(0);
    }
}

void demo(char *cfgfile, char *weightfile, float thresh, int cam_index, const char *filename, char **names, int classes, int delay, char *prefix, int avg_frames, float hier, int w, int h, int frames, int fullscreen)
{
    //demo_frame = avg_frames;
    image **alphabet = load_alphabet();
    demo_names = names;
    demo_alphabet = alphabet;
    demo_classes = classes;
    demo_thresh = thresh;
    demo_hier = hier;
    printf("Demo\n");
    net = load_network(cfgfile, weightfile, 0);
    set_batch_network(net, 1);
    pthread_t detect_thread;
    pthread_t fetch_thread;

    srand(2222222);

    int i;
    demo_total = size_network(net);
    predictions = calloc(demo_frame, sizeof(float*));
    for (i = 0; i < demo_frame; ++i){
        predictions[i] = calloc(demo_total, sizeof(float));
    }
    avg = calloc(demo_total, sizeof(float));

    if(filename){
        printf("video file: %s\n", filename);
        cap = cvCaptureFromFile(filename);
//*********rs20180415***********
    #ifdef SAVEVIDEO
        if(cap){
            int mfps = cvGetCaptureProperty(cap,CV_CAP_PROP_FPS);   //local video file,needn't change
            mVideoWriter=cvCreateVideoWriter("Output.avi",CV_FOURCC('M','J','P','G'),mfps,cvSize(cvGetCaptureProperty(cap,CV_CAP_PROP_FRAME_WIDTH),cvGetCaptureProperty(cap,CV_CAP_PROP_FRAME_HEIGHT)),1);
        }
    #endif
//*********rs20180415***********
    }else{
        cap = cvCaptureFromCAM(cam_index);
//*********rs20180415***********
    #ifdef SAVEVIDEO
        if(cap){
            //int mfps = cvGetCaptureProperty(cap,CV_CAP_PROP_FPS);  //webcam video file,need change.
            int mfps = 25;     //the output video FPS,you can set here.
            mVideoWriter=cvCreateVideoWriter("Output_webcam.avi",CV_FOURCC('M','J','P','G'),mfps,cvSize(cvGetCaptureProperty(cap,CV_CAP_PROP_FRAME_WIDTH),cvGetCaptureProperty(cap,CV_CAP_PROP_FRAME_HEIGHT)),1);
        }
    #endif
//*********rs20180415***********
        if(w){
            cvSetCaptureProperty(cap, CV_CAP_PROP_FRAME_WIDTH, w);
        }
        if(h){
            cvSetCaptureProperty(cap, CV_CAP_PROP_FRAME_HEIGHT, h);
        }
        if(frames){
            cvSetCaptureProperty(cap, CV_CAP_PROP_FPS, frames);
        }
    }

    if(!cap) error("Couldn't connect to webcam.\n");

    buff[0] = get_image_from_stream(cap);
    buff[1] = copy_image(buff[0]);
    buff[2] = copy_image(buff[0]);
    buff_letter[0] = letterbox_image(buff[0], net->w, net->h);
    buff_letter[1] = letterbox_image(buff[0], net->w, net->h);
    buff_letter[2] = letterbox_image(buff[0], net->w, net->h);
    ipl = cvCreateImage(cvSize(buff[0].w,buff[0].h), IPL_DEPTH_8U, buff[0].c);

    int count = 0;
    if(!prefix){
        cvNamedWindow("Demo", CV_WINDOW_NORMAL); 
        if(fullscreen){
            cvSetWindowProperty("Demo", CV_WND_PROP_FULLSCREEN, CV_WINDOW_FULLSCREEN);
        } else {
            cvMoveWindow("Demo", 0, 0);
            cvResizeWindow("Demo", 1352, 1013);
        }
    }

    demo_time = what_time_is_it_now();

    while(!demo_done){
        buff_index = (buff_index + 1) %3;
        if(pthread_create(&fetch_thread, 0, fetch_in_thread, 0)) error("Thread creation failed");
        if(pthread_create(&detect_thread, 0, detect_in_thread, 0)) error("Thread creation failed");
        if(!prefix){
//*********rs20180415***********
            #ifdef SAVEVIDEO
                save_video(buff[0],mVideoWriter);    
            #endif
//*********rs20180415***********
            fps = 1./(what_time_is_it_now() - demo_time);
            demo_time = what_time_is_it_now();
            display_in_thread(0);
        }else{
            char name[256];
            sprintf(name, "%s_%08d", prefix, count);
//*********rs20180415***********
            #ifdef SAVEVIDEO
                  save_video(buff[0],mVideoWriter);
            #else
            save_image(buff[(buff_index + 1)%3], name);
            #endif
//*********rs20180415***********
        }
        pthread_join(fetch_thread, 0);
        pthread_join(detect_thread, 0);
        ++count;
    }
}

/*
   void demo_compare(char *cfg1, char *weight1, char *cfg2, char *weight2, float thresh, int cam_index, const char *filename, char **names, int classes, int delay, char *prefix, int avg_frames, float hier, int w, int h, int frames, int fullscreen)
   {
   demo_frame = avg_frames;
   predictions = calloc(demo_frame, sizeof(float*));
   image **alphabet = load_alphabet();
   demo_names = names;
   demo_alphabet = alphabet;
   demo_classes = classes;
   demo_thresh = thresh;
   demo_hier = hier;
   printf("Demo\n");
   net = load_network(cfg1, weight1, 0);
   set_batch_network(net, 1);
   pthread_t detect_thread;
   pthread_t fetch_thread;

   srand(2222222);

   if(filename){
   printf("video file: %s\n", filename);
   cap = cvCaptureFromFile(filename);
   }else{
   cap = cvCaptureFromCAM(cam_index);

   if(w){
   cvSetCaptureProperty(cap, CV_CAP_PROP_FRAME_WIDTH, w);
   }
   if(h){
   cvSetCaptureProperty(cap, CV_CAP_PROP_FRAME_HEIGHT, h);
   }
   if(frames){
   cvSetCaptureProperty(cap, CV_CAP_PROP_FPS, frames);
   }
   }

   if(!cap) error("Couldn't connect to webcam.\n");

   layer l = net->layers[net->n-1];
   demo_detections = l.n*l.w*l.h;
   int j;

   avg = (float *) calloc(l.outputs, sizeof(float));
   for(j = 0; j < demo_frame; ++j) predictions[j] = (float *) calloc(l.outputs, sizeof(float));

   boxes = (box *)calloc(l.w*l.h*l.n, sizeof(box));
   probs = (float **)calloc(l.w*l.h*l.n, sizeof(float *));
   for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = (float *)calloc(l.classes+1, sizeof(float));

   buff[0] = get_image_from_stream(cap);
   buff[1] = copy_image(buff[0]);
   buff[2] = copy_image(buff[0]);
   buff_letter[0] = letterbox_image(buff[0], net->w, net->h);
   buff_letter[1] = letterbox_image(buff[0], net->w, net->h);
   buff_letter[2] = letterbox_image(buff[0], net->w, net->h);
   ipl = cvCreateImage(cvSize(buff[0].w,buff[0].h), IPL_DEPTH_8U, buff[0].c);

   int count = 0;
   if(!prefix){
   cvNamedWindow("Demo", CV_WINDOW_NORMAL); 
   if(fullscreen){
   cvSetWindowProperty("Demo", CV_WND_PROP_FULLSCREEN, CV_WINDOW_FULLSCREEN);
   } else {
   cvMoveWindow("Demo", 0, 0);
   cvResizeWindow("Demo", 1352, 1013);
   }
   }

   demo_time = what_time_is_it_now();

   while(!demo_done){
buff_index = (buff_index + 1) %3;
if(pthread_create(&fetch_thread, 0, fetch_in_thread, 0)) error("Thread creation failed");
if(pthread_create(&detect_thread, 0, detect_in_thread, 0)) error("Thread creation failed");
if(!prefix){
    fps = 1./(what_time_is_it_now() - demo_time);
    demo_time = what_time_is_it_now();
    display_in_thread(0);
}else{
    char name[256];
    sprintf(name, "%s_%08d", prefix, count);
    save_image(buff[(buff_index + 1)%3], name);
}
pthread_join(fetch_thread, 0);
pthread_join(detect_thread, 0);
++count;
}
}
*/
#else
void demo(char *cfgfile, char *weightfile, float thresh, int cam_index, const char *filename, char **names, int classes, int delay, char *prefix, int avg, float hier, int w, int h, int frames, int fullscreen)
{
    fprintf(stderr, "Demo needs OpenCV for webcam images.\n");
}
#endif

      我在运行的过程,碰到了很多问题,比如在通过摄像头实时检测时,遇到了下面这个问题,这个错误不致命,就是可执行检测但是保存不了检测视频,错误提示如下:

           

HIGHGUI ERROR: V4L/V4L2:VIDIOC_S_CROP
               HIGHGUI ERROR: V4L/V4L2:getting property #5 is not supported
             GLib-GIOMessage: Using the 'memory' GSettings backend.  Your settings will not be saved or shared with other applications.


             

YOLO目标检测PYQT系统源码 yolov3目标检测实战_ide_02

解决办法:

         (1)第一个问题

 

          

HIGHGUI ERROR: V4L/V4L2:VIDIOC_S_CROP
           HIGHGUI ERROR: V4L/V4L2:getting property #5 is not supported

       我自己测试了下,是代码问题,上面给的代码已更改,主要在通过摄像头获取视频帧率时采用了://int mfps = cvGetCaptureProperty(cap,CV_CAP_PROP_FPS); 指令,这样是不行的,测试本地时可以,所以这里给帧率设置了一个常数:int mfps = 25;可以结合demo.c文件对应着看,给了相应的注释。

        (2)第二个问题

      

GLib-GIOMessage: Using the 'memory' GSettings backend.  Your settings will not be saved or shared with other applications.       
          需要添加一个路径,操作如下:
          在ubuntu终端执行:
                                                sudo gedit /etc/profile
          然后在打开的文件内(需要sudo权限)添加下面内容:
                                                export GIO_EXTRA_MODULES=/usr/lib/x86_64-linux-gnu/gio/modules/ 
         最后是上面的更改立即生效:
                                                source .bashrc

补充:这个程序好像保存出来的视频确实有点点问题,最终的视频是一闪一闪的。暂时解决方案:将被检测视频的每张图片分别保存为单张图片,然后单独合成一个视频就行了(正常),需要两步操作,整合在一起遇到了问题,欢迎交流。

操作:(1)在darket目录下手动新建一个文件夹“picture”,用于存放被检测的单张结果图片。

          (2)将图片合成视频,C++和python利用opencv很简单,百度以下都是的。你只需要更改两个文件即可,demo.c与image.c,下载链接为:https://pan.baidu.com/s/14s8vaF4Wac0hJY7S7hbz5A


补充:20181021,新上传的代码可用。老代码也可用,就是保存的视频有点点闪烁,评论区貌似出现了一个解决方法,大家可以尝试下。(我自己工作了,现在没有这个实验环境)

 

参考: