volatile 原理
volatile 的底层实现原理是内存屏障,Memory Barrier(Memory Fence)
- 对 volatile 变量的写指令后会加入写屏障
- 对 volatile 变量的读指令前会加入读屏障
1. 如何保证可见性
- 写屏障(sfence)保证在该屏障之前的,对共享变量的改动,都同步到主存当中
public void actor2(I_Result r) {
num = 2;
ready = true; // ready 是 volatile 赋值带写屏障
// 写屏障
}
- 而读屏障(lfence)保证在该屏障之后,对共享变量的读取,加载的是主存中最新数据
public void actor1(I_Result r) {
// 读屏障
// ready 是 volatile 读取值带读屏障
if(ready) {
r.r1 = num + num;
} else {
r.r1 = 1;
}
}
2. 如何保证有序性
- 写屏障会确保指令重排序时,不会将写屏障之前的代码排在写屏障之后
public void actor2(I_Result r) {
num = 2;
ready = true; // ready 是 volatile 赋值带写屏障
// 写屏障
}
- 读屏障会确保指令重排序时,不会将读屏障之后的代码排在读屏障之前
public void actor1(I_Result r) {
// 读屏障
// ready 是 volatile 读取值带读屏障
if(ready) {
r.r1 = num + num;
} else {
r.r1 = 1;
}
}
还是那句话,不能解决指令交错:
- 写屏障仅仅是保证之后的读能够读到最新的结果,但不能保证读跑到它前面去
- 而有序性的保证也只是保证了本线程内相关代码不被重排序
3. double-checked locking 问题
代码如下
关键在于 0: getstatic 这行代码在 monitor
控制之外,它就像之前举例中不守规则的人,可以越过 monitor 读取INSTANCE 变量的值
这时 t1 还未完全将构造方法执行完毕,如果在构造方法中要执行很多初始化操作,那么 t2 拿到的是将是一个未初始化完毕的单例
对 INSTANCE 使用 volatile
修饰即可,可以禁用指令重排,但要注意在 JDK 5 以上的版本的 volatile
才会真正有效
4. double-checked locking 解决
加了volatile
public final class Singleton {
private Singleton() { }
private static volatile Singleton INSTANCE = null;
public static Singleton getInstance() {
// 实例没创建,才会进入内部的 synchronized代码块
if (INSTANCE == null) {
synchronized (Singleton.class) { // t2
// 也许有其它线程已经创建实例,所以再判断一次
if (INSTANCE == null) { // t1
INSTANCE = new Singleton();
}
}
}
return INSTANCE;
}
}
如上面的注释内容所示,读写 volatile 变量时会加入内存屏障(Memory Barrier(Memory Fence)),保证下面两点:
- 可见性
- 写屏障(sfence)保证在该屏障之前的 t1 对共享变量的改动,都同步到主存当中
- 而读屏障(lfence)保证在该屏障之后 t2 对共享变量的读取,加载的是主存中最新数据
- 有序性
- 写屏障会确保指令重排序时,不会将写屏障之前的代码排在写屏障之后
- 读屏障会确保指令重排序时,不会将读屏障之后的代码排在读屏障之前
- 更底层是读写变量时使用 lock 指令来多核 CPU 之间的可见性与有序性