TreeMap使用红黑树存储元素,可以保证元素按key值的大小进行遍历。
TreeMap实现了Map、SortedMap、NavigableMap、Cloneable、Serializable等接口。
存储结构:红黑树
红黑树的性质:
红黑树的性质 |
性质1:每个节点要么是黑色,要么是红色。 |
性质2:根节点是黑色。 |
性质3:每个叶子节点(NIL)是黑色。 |
性质4:每个红色节点的两个子节点一定都是黑色。不能有两个红色节点相连。 |
性质5:任意一节点到每个叶子节点的路径都包含数量相同的黑结点。俗称:黑高! |
源码:
属性:
/**
* 比较器,如果没传则key要实现Comparable接口
*/
private final Comparator<? super K> comparator;
/**
* 根节点
*/
private transient Entry<K,V> root;
/**
* 元素个数
*/
private transient int size = 0;
/**
* 修改次数
*/
private transient int modCount = 0;
(1)comparator
按key的大小排序有两种方式,一种是key实现Comparable接口,一种方式通过构造方法传入比较器。
(2)root
根节点,TreeMap没有桶的概念,所有的元素都存储在一颗树中。
Entry内部类
存储节点,典型的红黑树结构。
static final class Entry<K,V> implements Map.Entry<K,V> {
K key;
V value;
Entry<K,V> left;
Entry<K,V> right;
Entry<K,V> parent;
boolean color = BLACK;
}
构造方法
/**
* 默认构造方法,key必须实现Comparable接口
*/
public TreeMap() {
comparator = null;
}
/**
* 使用传入的comparator比较两个key的大小
*/
public TreeMap(Comparator<? super K> comparator) {
this.comparator = comparator;
}
/**
* key必须实现Comparable接口,把传入map中的所有元素保存到新的TreeMap中
*/
public TreeMap(Map<? extends K, ? extends V> m) {
comparator = null;
putAll(m);
}
/**
* 使用传入map的比较器,并把传入map中的所有元素保存到新的TreeMap中
*/
public TreeMap(SortedMap<K, ? extends V> m) {
comparator = m.comparator();
try {
buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
}
构造方法主要分成两类,一类是使用comparator比较器,一类是key必须实现Comparable接口。
get(Object key)方法
获取元素,典型的二叉查找树的查找方法。
public V get(Object key) {
// 根据key查找元素
Entry<K,V> p = getEntry(key);
// 找到了返回value值,没找到返回null
return (p==null ? null : p.value);
}
final Entry<K,V> getEntry(Object key) {
// 如果comparator不为空,使用comparator的版本获取元素
if (comparator != null)
return getEntryUsingComparator(key);
// 如果key为空返回空指针异常
if (key == null)
throw new NullPointerException();
// 将key强转为Comparable
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;//强转
// 从根元素开始遍历
Entry<K,V> p = root;
while (p != null) {
int cmp = k.compareTo(p.key);
if (cmp < 0)
// 如果小于0从左子树查找
p = p.left;
else if (cmp > 0)
// 如果大于0从右子树查找
p = p.right;
else
// 如果相等说明找到了直接返回
return p;
}
// 没找到返回null
return null;
}
final Entry<K,V> getEntryUsingComparator(Object key) {
@SuppressWarnings("unchecked")
K k = (K) key;
Comparator<? super K> cpr = comparator;
if (cpr != null) {
// 从根元素开始遍历
Entry<K,V> p = root;
while (p != null) {
int cmp = cpr.compare(k, p.key);
if (cmp < 0)
// 如果小于0从左子树查找
p = p.left;
else if (cmp > 0)
// 如果大于0从右子树查找
p = p.right;
else
// 如果相等说明找到了直接返回
return p;
}
}
// 没找到返回null
return null;
}
(1)从root遍历整个树;
(2)如果待查找的key比当前遍历的key小,则在其左子树中查找;
(3)如果待查找的key比当前遍历的key大,则在其右子树中查找;
(4)如果待查找的key与当前遍历的key相等,则找到了该元素,直接返回;
插入元素、删除元素基本上就是操作红黑树那一套。
删除元素规则:
删除元素本身比较简单,就是采用二叉树的删除规则。
(1)如果删除的位置有两个叶子节点,则从其右子树中取最小的元素放到删除的位置,然后把删除位置移到替代元素的位置,进入下一步。
(2)如果删除的位置只有一个叶子节点(有可能是经过第一步转换后的删除位置),则把那个叶子节点作为替代元素,放到删除的位置,然后把这个叶子节点删除。
(3)如果删除的位置没有叶子节点,则直接把这个删除位置的元素删除即可。
(4)针对红黑树,如果删除位置是黑色节点,还需要做再平衡。
(5)如果有替代元素,则以替代元素作为当前节点进入再平衡。
(6)如果没有替代元素,则以删除的位置的元素作为当前节点进入再平衡,平衡之后再删除这个节点。
TreeMap的遍历
@Override
public void forEach(BiConsumer<? super K, ? super V> action) {
Objects.requireNonNull(action);
// 遍历前的修改次数
int expectedModCount = modCount;
// 执行遍历,先获取第一个元素的位置,再循环遍历后继节点
for (Entry<K, V> e = getFirstEntry(); e != null; e = successor(e)) {
// 执行动作
action.accept(e.key, e.value);
// 如果发现修改次数变了,则抛出异常
if (expectedModCount != modCount) {
throw new ConcurrentModificationException();
}
}
}
(1)寻找第一个节点;
从根节点开始找最左边的节点,即最小的元素。
final Entry<K,V> getFirstEntry() {
Entry<K,V> p = root;
// 从根节点开始找最左边的节点,即最小的元素
if (p != null)
while (p.left != null)
p = p.left;
return p;
}
(2)循环遍历后继节点;
寻找后继节点这个方法我们在删除元素的时候也用到过,当时的场景是有右子树,则从其右子树中寻找最小的节点。
static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
if (t == null)
// 如果当前节点为空,返回空
return null;
else if (t.right != null) {
// 如果当前节点有右子树,取右子树中最小的节点
Entry<K,V> p = t.right;
while (p.left != null)
p = p.left;
return p;
} else {
// 如果当前节点没有右子树
// 如果当前节点是父节点的左子节点,直接返回父节点
// 如果当前节点是父节点的右子节点,一直往上找,直到找到一个祖先节点是其父节点的左子节点为止,返回这个祖先节点的父节点
Entry<K,V> p = t.parent;
Entry<K,V> ch = t;
while (p != null && ch == p.right) {
ch = p;
p = p.parent;
}
return p;
}
}
让我们一起来分析下这种方式的时间复杂度吧。
首先,寻找第一个元素,因为红黑树是接近平衡的二叉树,所以找最小的节点,相当于是从顶到底了,时间复杂度为O(log n);
其次,寻找后继节点,因为红黑树插入元素的时候会自动平衡,最坏的情况就是寻找右子树中最小的节点,时间复杂度为O(log k),k为右子树元素个数;
最后,需要遍历所有元素,时间复杂度为O(n);
所以,总的时间复杂度为 O(log n) + O(n * log k) ≈ O(n)。
虽然遍历红黑树的时间复杂度是O(n),但是它实际是要比跳表O(logN)要慢一点的,啥?跳表是啥?https://zhuanlan.zhihu.com/p/53975333 redis中的zset是跳跃表的强化实现。
小结:
(1)TreeMap的存储结构只有一颗红黑树;
(2)TreeMap中的元素是有序的,按key的顺序排列;
(3)TreeMap比HashMap要慢一些,因为HashMap前面还做了一层桶,寻找元素要快很多;
(4)TreeMap没有扩容的概念;
(5)TreeMap的遍历不是采用传统的递归式遍历;
(6)TreeMap可以按范围查找元素,查找最近的元素;