知识点:

collection模块(采集)

time模块(时间)

random模块(随机)

os模块(操作系统)

sys模块(Py操作)

json和pickle模块(序列化)

subprocess模块(子进程)

一 collection模块



内置的数据类型:
# 整型\浮点型\字符串\列表\字典\集合\元组\布尔值
# int\flout\str\list\dict\set\tuple\bool



collections模块提供了几个额外的数据类型:

1.namedtuple: 具名元组,生成可以使用名字来访问元素内容的tuple

2.deque: 双端队列,可以快速的从另外一侧追加和推出对象

3.Counter: 计数器,主要用来计数

4.OrderedDict: 有序字典

5.defaultdict: 带有默认值的字典

 

1 namedtuple:具名元组,生成可以使用名字来访问元素内容的tuple

tuple可以表示不变集合,想表示坐标点x为1 y为2的坐标



p = (1, 2)



 

但我们看到(1, 2),很难看出这个tuple是用来表示一个坐标的。这时,我们就可以用namedtuple

 



from collections import namedtuple

point = namedtuple('坐标', ['x', 'y', 'z'])  # 第二个参数既可以传可迭代对象
point = namedtuple('坐标', 'x y z')  # 也可以传字符串 但是字符串之间以空格隔开
p = point(1, 2, 5)  # 注意元素的个数必须跟namedtuple第二个参数里面的值数量一致

print(p)
print(p.x)
print(p.y)
print(p.z)



用来表示一副扑克牌



card = namedtuple('扑克牌','color number')
# card1 = namedtuple('扑克牌',['color','number'])
A = card('♠','A')
print(A)
print(A.color)
print(A.number)



用来表示东京特色



city = namedtuple('日本','name person size')
c = city('东京','R老师','L')
print(c)
print(c.name)
print(c.person)
print(c.size)



 

 

2.deque: 双端队列,可以快速的从另外一侧追加和推出对象

我们使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。



# 队列:现进先出(FIFO first in first out)
import queue
q = queue.Queue()  # 生成队列对象
q.put('first')  # 往队列中添加值
q.put('second')
q.put('third')

print(q.get())  # 朝队列要值
print(q.get())
print(q.get())
print(q.get())  # 如果队列中的值取完了 程序会在原地等待 直到从队列中拿到值才停止



deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:



# deque双端队列
from collections import deque
q = deque(['a','b','c'])
"""
append \ appendleft
pop \ popleft
"""
q.append(1)
q.appendleft(2)

"""
队列不应该支持任意位置插值
只能在首尾插值(不能插队)
"""
q.insert(0,'哈哈哈')  # 特殊点:双端队列可以根据索引在任意位置插值
print(q.pop())
print(q.popleft())
print(q.popleft())



deque除了实现list的append()pop()外,还支持appendleft()popleft(),这样就可以非常高效地往头部添加或删除元素。

 

3.Counter: 计数器,主要用来计数

Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。



c = Counter('abcdeabcdabcaba')
print c
输出:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})



from collections import Counter
s = 'abcdeabcdabcaba'
res = Counter(s)
print(res)
for i in res:
    print(i)
先循环当前字符串 将每一个字符串都采用字典新建键值对的范式
d = {}
for i in s:
    d[i] = 0
print(d)



 

4.OrderedDict: 有序字典

使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。

如果要保持Key的顺序,可以用OrderedDict



from collections import OrderedDict
d = dict([('a', 1), ('b', 2), ('c', 3)])
print(d) # dict的Key是无序的
# {'a': 1, 'c': 3, 'b': 2}
od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
od # OrderedDict的Key是有序的
# OrderedDict([('a', 1), ('b', 2), ('c', 3)])



 

注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:



>>> od = OrderedDict()
>>> od['z'] = 1
>>> od['y'] = 2
>>> od['x'] = 3
>>> od.keys() # 按照插入的Key的顺序返回
['z', 'y', 'x']



 



normal_d = dict([('a',1),('b',2),('c',3)])
print(normal_d)
from collections import OrderedDict
order_d = OrderedDict([('a',1),('b',2),('c',3)])

order_d1 = OrderedDict()
order_d1['x'] = 1
order_d1['y'] = 2
order_d1['z'] = 3
print(order_d1)
for i in order_d1:
    print(i)

order_d1 = dict()
order_d1['x'] = 1
order_d1['y'] = 2
order_d1['z'] = 3
print(order_d1)
for i in order_d1:
    print(i)



 

5.defaultdict: 带有默认值的字典

有如下值集合 [11,22,33,44,55,66,77,88,99,90...],将所有大于 66 的值保存至字典的第一个key中,将小于 66 的值保存至第二个key的值中。



即: { 'k1' : 大于 66  'k2' : 小于 66 }



原生字典解决方法




codesys的逻辑与 codesys用什么语言_codesys的逻辑与

codesys的逻辑与 codesys用什么语言_字符串_02

values = [11, 22, 33, 44, 55, 66, 77, 88, 99, 90]

my_dict = {}

for value in values:
    if value > 66:
        if my_dict.has_key('k1'):
            my_dict['k1'].append(value)
        else:
            my_dict['k1'] = [value]
    else:
        if my_dict.has_key('k2'):
            my_dict['k2'].append(value)
        else:
            my_dict['k2'] = [value]


View Code


defaultdict字典解决方法



from collections import defaultdict

values = [11, 22, 33, 44, 55, 66, 77, 88, 99, 90]

d = defaultdict(list)  # 后续该字典中新建的key对应的value默认就是列表

for i in values:
    if i > 66:
        d['k1'].append(i)
    else:
        d['k2'].append(i)

print(d)



附加



my_dict1 = defaultdict(int)
print(my_dict1['xxx']) # 0
print(my_dict1['yyy']) # 0

my_dict2 = defaultdict(bool)
print(my_dict2['kkk']) #False

my_dict3 = defaultdict(tuple)
print(my_dict3['mmm']) # ()



使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict




codesys的逻辑与 codesys用什么语言_codesys的逻辑与

codesys的逻辑与 codesys用什么语言_字符串_02

from collections import defaultdict

dd = defaultdict(lambda: 'N/A')
dd['key1'] = 'abc'
print(dd['key1'])  # key1存在  'abc'
print(dd['key2'])  # key2不存在,返回默认值  'N/A'


View Code


 

二 时间模块 

和时间有关系的我们就要用到时间模块。在使用模块之前,应该首先导入这个模块。



#常用方法
1.time.sleep(secs)
(线程)推迟指定的时间运行。单位为秒。
2.time.time()
获取当前时间戳



在Python中,通常有这三种方式来表示时间:

1.时间戳(timestamp) 
2.格式化时间(Format String)(用来展示给人看的)
3.结构化时间( struct_time)

(1)时间戳(timestamp) :通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型。



import time
print(time.time())



(2)格式化的时间字符串(Format String): ‘1999-12-06’



import time

print(time.strftime('%Y-%m-%d'))
print(time.strftime('%Y-%m-%d %H:%M:%S'))
print(time.strftime('%Y-%m-%d %X'))  # %X等价于%H:%M:%S
print(time.strftime('%H:%M'))
print(time.strftime('%Y/%m'))



 

python中时间日期格式化符号:




codesys的逻辑与 codesys用什么语言_codesys的逻辑与

codesys的逻辑与 codesys用什么语言_字符串_02

%y 两位数的年份表示(00-99)
%Y 四位数的年份表示(000-9999)
%m 月份(01-12)
%d 月内中的一天(0-31)
%H 24小时制小时数(0-23)
%I 12小时制小时数(01-12)
%M 分钟数(00=59)
%S 秒(00-59)
%a 本地简化星期名称
%A 本地完整星期名称
%b 本地简化的月份名称
%B 本地完整的月份名称
%c 本地相应的日期表示和时间表示
%j 年内的一天(001-366)
%p 本地A.M.或P.M.的等价符
%U 一年中的星期数(00-53)星期天为星期的开始
%w 星期(0-6),星期天为星期的开始
%W 一年中的星期数(00-53)星期一为星期的开始
%x 本地相应的日期表示
%X 本地相应的时间表示
%Z 当前时区的名称
%% %号本身


View Code


(3)结构化时间,元组(struct_time) :struct_time元组共有9个元素共九个元素:(年,月,日,时,分,秒,一年中第几周,一年中第几天等)



print(time.localtime())

print(time.localtime(time.time()))
res = time.localtime(time.time())print(time.mktime(res))
print(time.strftime('%Y-%m',time.localtime()))
print(time.strptime(time.strftime('%Y-%m',time.localtime()),'%Y-%m'))



索引(Index)

属性(Attribute)

值(Values)

0

tm_year(年)

比如2011

1

tm_mon(月)

1 - 12

2

tm_mday(日)

1 - 31

3

tm_hour(时)

0 - 23

4

tm_min(分)

0 - 59

5

tm_sec(秒)

0 - 60

6

tm_wday(weekday)

0 - 6(0表示周一)

7

tm_yday(一年中的第几天)

1 - 366

8

tm_isdst(是否是夏令时)

默认为0

 



#导入时间模块
import time

#时间戳
>>>time.time()
1500875844.800804

#时间字符串
>>>time.strftime("%Y-%m-%d %X")
'2017-07-24 13:54:37'
>>>time.strftime("%Y-%m-%d %H-%M-%S")
'2017-07-24 13-55-04'

#时间元组:localtime将一个时间戳转换为当前时区的struct_time
time.localtime()
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24,
          tm_hour=13, tm_min=59, tm_sec=37, 
                 tm_wday=0, tm_yday=205, tm_isdst=0)



小结:时间戳是计算机能够识别的时间;时间字符串是人能够看懂的时间;元组则是用来操作时间的

几种格式之间的转换

codesys的逻辑与 codesys用什么语言_结构化_07



#时间戳-->结构化时间
#time.gmtime(时间戳)    #UTC时间,与英国伦敦当地时间一致
#time.localtime(时间戳) #当地时间。例如我们现在在北京执行这个方法:与UTC时间相差8小时,UTC时间+8小时 = 北京时间 
>>>time.gmtime(1500000000)
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=2, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0)
>>>time.localtime(1500000000)
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=10, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0)

#结构化时间-->时间戳 
#time.mktime(结构化时间)
>>>time_tuple = time.localtime(1500000000)
>>>time.mktime(time_tuple)
1500000000.0



 



#结构化时间-->字符串时间
#time.strftime("格式定义","结构化时间")  结构化时间参数若不传,则显示当前时间
>>>time.strftime("%Y-%m-%d %X")
'2017-07-24 14:55:36'
>>>time.strftime("%Y-%m-%d",time.localtime(1500000000))
'2017-07-14'

#字符串时间-->结构化时间
#time.strptime(时间字符串,字符串对应格式)
>>>time.strptime("2017-03-16","%Y-%m-%d")
time.struct_time(tm_year=2017, tm_mon=3, tm_mday=16, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=3, tm_yday=75, tm_isdst=-1)
>>>time.strptime("07/24/2017","%m/%d/%Y")
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=0, tm_yday=205, tm_isdst=-1)



codesys的逻辑与 codesys用什么语言_时间戳_08



#结构化时间 --> %a %b %d %H:%M:%S %Y串
#time.asctime(结构化时间) 如果不传参数,直接返回当前时间的格式化串
>>>time.asctime(time.localtime(1500000000))
'Fri Jul 14 10:40:00 2017'
>>>time.asctime()
'Mon Jul 24 15:18:33 2017'

#时间戳 --> %a %b %d %H:%M:%S %Y串
#time.ctime(时间戳)  如果不传参数,直接返回当前时间的格式化串
>>>time.ctime()
'Mon Jul 24 15:19:07 2017'
>>>time.ctime(1500000000)
'Fri Jul 14 10:40:00 2017'



计算时间差




codesys的逻辑与 codesys用什么语言_codesys的逻辑与

codesys的逻辑与 codesys用什么语言_字符串_02

import time
true_time=time.mktime(time.strptime('2017-09-11 08:30:00','%Y-%m-%d %H:%M:%S'))
time_now=time.mktime(time.strptime('2017-09-12 11:00:00','%Y-%m-%d %H:%M:%S'))
dif_time=time_now-true_time
struct_time=time.gmtime(dif_time)
print('过去了%d年%d月%d天%d小时%d分钟%d秒'%(struct_time.tm_year-1970,struct_time.tm_mon-1,
                                       struct_time.tm_mday-1,struct_time.tm_hour,
                                       struct_time.tm_min,struct_time.tm_sec))


View Code


 

2.2 datetime模块



import datetime

# 自定义日期
res = datetime.date(2019, 7, 15)
print(res)  # 2019-07-15

# 获取本地时间
# 年月日
now_date = datetime.date.today()
print(now_date)  # 2019-07-01
# 年月日时分秒
now_time = datetime.datetime.today()
print(now_time)  # 2019-07-01 17:46:08.214170

# 无论是年月日,还是年月日时分秒对象都可以调用以下方法获取针对性的数据
# 以datetime对象举例
print(now_time.year)  # 获取年份2019
print(now_time.month)  # 获取月份7
print(now_time.day)  # 获取日1
print(now_time.weekday())  # 获取星期(weekday星期是0-6) 0表示周一
print(now_time.isoweekday())  # 获取星期(weekday星期是1-7) 1表示周一

# timedelta对象
# 可以对时间进行运算操作
import datetime

# 获得本地日期 年月日
tday = datetime.date.today()
# 定义操作时间 day=7 也就是可以对另一个时间对象加7天或者减少7点
tdelta = datetime.timedelta(days=7)

# 打印今天的日期
print('今天的日期:{}'.format(tday))  # 2019-07-01
# 打印七天后的日期
print('从今天向后推7天:{}'.format(tday + tdelta))  # 2019-07-08
# 总结:日期对象与timedelta之间的关系
"""
日期对象 = 日期对象 +/- timedelta对象
timedelta对象 = 日期对象 +/- 日期对象

验证:

"""
# 定义日期对象
now_date1 = datetime.date.today()
# 定义timedelta对象
lta = datetime.timedelta(days=6)
now_date2 = now_date1 + lta  # 日期对象 = 日期对象 +/- timedelta对象
print(type(now_date2))  # <class 'datetime.date'>
lta2 = now_date1 - now_date2  # timedelta对象 = 日期对象 +/- 日期对象
print(type(lta2))  # <class 'datetime.timedelta'>


# 小练习 计算举例今年过生日还有多少天
birthday = datetime.date(2019, 12, 21)
now_date = datetime.date.today()
days = birthday - now_date
print('生日:{}'.format(birthday))
print('今天的日期:{}'.format(tday))
print('距离生日还有{}天'.format(days))


# 总结年月日时分秒及时区问题
import datetime

dt_today = datetime.datetime.today()
dt_now = datetime.datetime.now()
dt_utcnow = datetime.datetime.utcnow()  # UTC时间与我们的北京时间cha ju

print(dt_today)
print(dt_now)
print(dt_utcnow)



 

三 random模块



import random
#随机小数
random.random()      # 大于0且小于1之间的小数
0.7664338663654585
random.uniform(1,3) #大于1小于3的小数
1.6270147180533838
#恒富:发红包

#随机整数
random.randint(1,5)  # 摇号,随机取大于等于1且小于等于5之间的整数
random.randrange(1,10,2) # 大于等于1且小于10之间的奇数


#随机选择一个返回
random.choice([1,'23',[4,5]])  # #1或者23或者[4,5]
#随机选择多个返回,返回的个数为函数的第二个参数
random.sample([1,'23',[4,5]],2) # #列表元素任意2个组合
[[4, 5], '23']

#打乱列表顺序
item=[1,3,5,7,9]
random.shuffle(item) # 洗牌\打乱次序
print(item)
[5, 1, 3, 7, 9]
random.shuffle(item)
print(item)
[5, 9, 7, 1, 3]



# 生成随机验证码



"""
大写字母\小写字母\数字,5位数的随机验证码

提示:用chr \ random.choice   封装成一个函数,用户想生成几位就生成几位
"""
def get_code(n):
    code = ''
    for i in range(n):
        # 先生成随机的大写字母 小写字母 数字
        upper_str = chr(random.randint(65,90))
        lower_str = chr(random.randint(97,122))
        random_int = str(random.randint(0,9))
        # 从上面三个中随机选择一个作为随机验证码的某一位
        code += random.choice([upper_str,lower_str,random_int])
    return code
res = get_code(4)
print(res)



 

os模块

os模块是与操作系统交互的一个接口



os.makedirs('dirname1/dirname2')    可生成多层递归目录
os.removedirs('dirname1')    若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推
os.mkdir('dirname')    生成单级目录;相当于shell中mkdir dirname
os.rmdir('dirname')    删除单级空目录,若目录不为空则无法删除,报错;相当于shell中rmdir dirname
os.listdir('dirname')    列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印
os.remove()  删除一个文件
os.rename("oldname","newname")  重命名文件/目录
os.stat('path/filename')  获取文件/目录信息

os.system("bash command")  运行shell命令,直接显示
os.popen("bash command).read()  运行shell命令,获取执行结果
os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径
os.chdir("dirname")  改变当前脚本工作目录;相当于shell下cd

os.path
os.path.abspath(path) 返回path规范化的绝对路径
os.path.split(path) 将path分割成目录和文件名二元组返回 
os.path.dirname(path) 返回path的目录。其实就是os.path.split(path)的第一个元素 
os.path.basename(path) 返回path最后的文件名。如何path以/或\结尾,那么就会返回空值。即os.path.split(path)的第二个元素
os.path.exists(path)  如果path存在,返回True;如果path不存在,返回False
os.path.isabs(path)  如果path是绝对路径,返回True
os.path.isfile(path)  如果path是一个存在的文件,返回True。否则返回False
os.path.isdir(path)  如果path是一个存在的目录,则返回True。否则返回False
os.path.join(path1[, path2[, ...]])  将多个路径组合后返回,第一个绝对路径之前的参数将被忽略
os.path.getatime(path)  返回path所指向的文件或者目录的最后访问时间
os.path.getmtime(path)  返回path所指向的文件或者目录的最后修改时间
os.path.getsize(path) 返回path的大小



注意:os.stat('path/filename')  获取文件/目录信息 的结构说明



import os
BASE_DIR = os.path.dirname(__file__)  # 上一个目录
MOVIE_DIR = os.path.join(BASE_DIR,'老师们的作品')  # 将多个路径组合后返回
movie_list = os.listdir(MOVIE_DIR)  # 输入文件列表
while True:
    for i,j in enumerate(movie_list,1):
        print(i,j)
    choice = input('你想看谁的啊(今日热搜:tank老师)>>>:').strip()
    if choice.isdigit():  # 判断用户输入的是否是纯数字
        choice = int(choice)  # 传成int类型
        if choice in range(1,len(movie_list)+1):  # 判断是否在列表元素个数范围内
            # 获取用户想要看的文件名
            target_file = movie_list[choice-1]
            # 拼接文件绝对路径
            target_path = os.path.join(MOVIE_DIR,target_file)
            with open(target_path,'r',encoding='utf-8') as f:
                print(f.read())

os.mkdir('tank老师精选') # 自动创建文件夹
print(os.path.exists(r'D:\Python项目\day16\rion老师精选')) # 判断文件是否存在
print(os.path.exists(r'D:\Python项目\day16\老师们的作品\tank老师.txt')) # 判断文件是否存在
print(os.path.isfile(r'D:\Python项目\day16\tank老师精选')) # 只能判断文件 不能判断文件夹
print(os.path.isfile(r'D:\Python项目\day16\老师们的作品\tank老师.txt')) # 只能判断文件 不能判断文件夹

os.rmdir(r'D:\Python项目\day16\老师们的作品') # 只能删空文件夹

print(os.getcwd())
print(os.chdir(r'D:\Python项目\day16\老师们的作品')) # 切换当前所在的目录
print(os.getcwd())



# 获取文件大小
print(os.path.getsize(r'D:\Python项目\day16\老师们的作品\tank老师.txt')) # 字节大小
with open(r'D:\Python项目\day16\老师们的作品\tank老师.txt',encoding='utf-8') as f:
print(len(f.read()))



stat 结构




codesys的逻辑与 codesys用什么语言_codesys的逻辑与

codesys的逻辑与 codesys用什么语言_字符串_02

stat 结构:

st_mode: inode 保护模式
st_ino: inode 节点号。
st_dev: inode 驻留的设备。
st_nlink: inode 的链接数。
st_uid: 所有者的用户ID。
st_gid: 所有者的组ID。
st_size: 普通文件以字节为单位的大小;包含等待某些特殊文件的数据。
st_atime: 上次访问的时间。
st_mtime: 最后一次修改的时间。
st_ctime: 由操作系统报告的"ctime"。在某些系统上(如Unix)是最新的元数据更改的时间,在其它系统上(如Windows)是创建时间(详细信息参见平台的文档)。


View Code


os模块的属性




codesys的逻辑与 codesys用什么语言_codesys的逻辑与

codesys的逻辑与 codesys用什么语言_字符串_02

os.sep    输出操作系统特定的路径分隔符,win下为"\\",Linux下为"/"
os.linesep    输出当前平台使用的行终止符,win下为"\r\n",Linux下为"\n"
os.pathsep    输出用于分割文件路径的字符串 win下为;,Linux下为:
os.name    输出字符串指示当前使用平台。win->'nt'; Linux->'posix'


View Code


 

sys模块

sys模块是与python解释器交互的一个接口



sys.argv           命令行参数List,第一个元素是程序本身路径
sys.exit(n)        退出程序,正常退出时exit(0),错误退出sys.exit(1)
sys.version        获取Python解释程序的版本信息
sys.path           返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
sys.platform       返回操作系统平台名称



异常处理和status



import sys
try:
    sys.exit(1)
except SystemExit as e:
    print(e)



sys的运用



import sys
# sys.path.append()  # 将某个路径添加到系统的环境变量中
# print(sys.platform)
# print(sys.version)  # python解释器的版本

print(sys.argv)  # 命令行启动文件 可以做身份的验证
if len(sys.argv) <= 1:
    print('请输入用户名和密码')
else:
    username = sys.argv[1]
    password = sys.argv[2]
    if username == 'jason' and password == '123':
        print('欢迎使用')
        # 当前这个py文件逻辑代码
    else:
        print('用户不存在 无法执行当前文件')



 

序列化模块

什么叫序列化——将原本的字典、列表等内容转换成一个字符串的过程就叫做序列化

为什么要有序列化模块?




codesys的逻辑与 codesys用什么语言_codesys的逻辑与

codesys的逻辑与 codesys用什么语言_字符串_02

比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给?
现在我们能想到的方法就是存在文件里,然后另一个python程序再从文件里读出来。
但是我们都知道,对于文件来说是没有字典这个概念的,所以我们只能将数据转换成字典放到文件中。
你一定会问,将字典转换成一个字符串很简单,就是str(dic)就可以办到了,为什么我们还要学习序列化模块呢?
没错序列化的过程就是从dic 变成str(dic)的过程。现在你可以通过str(dic),将一个名为dic的字典转换成一个字符串,
但是你要怎么把一个字符串转换成字典呢?
聪明的你肯定想到了eval(),如果我们将一个字符串类型的字典str_dic传给eval,就会得到一个返回的字典类型了。
eval()函数十分强大,但是eval是做什么的?e官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果。
BUT!强大的函数有代价。安全性是其最大的缺点。
想象一下,如果我们从文件中读出的不是一个数据结构,而是一句"删除文件"类似的破坏性语句,那么后果实在不堪设设想。
而使用eval就要担这个风险。
所以,我们并不推荐用eval方法来进行反序列化操作(将str转换成python中的数据结构)


View Code


 

序列化的目的



1、以某种存储形式使自定义 对象持久化;



2、将对象从一个地方传递到另一个地方。



3、使程序更具维护性。



 

codesys的逻辑与 codesys用什么语言_结构化_17

 

 

d = {'name':'jason'} 字典
str(d)

写入文件的数据必须是字符串
基于网络传输的数据必须是二进制

序列化:其他数据类型转成字符串的过程
反序列化:字符串转成其他数据类型

json模块(******)
所有的语言都支持json格式,但其支持的数据类型很少 字符串 列表 字典 整型 元组(转成列表) 布尔值

pickle模块(****)
只支持python,但python所有的数据类型都支持

# json

Json模块提供了四个功能:dumps、dump、loads、load

 

loads和dumps



import json
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = json.dumps(dic)  #序列化:将一个字典转换成一个字符串
print(type(str_dic),str_dic)  #<class 'str'> {"k3": "v3", "k1": "v1", "k2": "v2"}
#注意,json转换完的字符串类型的字典中的字符串是由""表示的

dic2 = json.loads(str_dic)  #反序列化:将一个字符串格式的字典转换成一个字典
#注意,要用json的loads功能处理的字符串类型的字典中的字符串必须由""表示
print(type(dic2),dic2)  #<class 'dict'> {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'}


list_dic = [1,['a','b','c'],3,{'k1':'v1','k2':'v2'}]
str_dic = json.dumps(list_dic) #也可以处理嵌套的数据类型 
print(type(str_dic),str_dic) #<class 'str'> [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}]
list_dic2 = json.loads(str_dic)
print(type(list_dic2),list_dic2) #<class 'list'> [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}]



load和dump



import json
f = open('json_file','w')
dic = {'k1':'v1','k2':'v2','k3':'v3'}
json.dump(dic,f)  #dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件
f.close()

f = open('json_file')
dic2 = json.load(f)  #load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回
f.close()
print(type(dic2),dic2)



 

 



import json
f = open('file','w')
json.dump({'国籍':'中国'},f)
ret = json.dumps({'国籍':'中国'})
f.write(ret+'\n')
json.dump({'国籍':'美国'},f,ensure_ascii=False)
ret = json.dumps({'国籍':'美国'},ensure_ascii=False)
f.write(ret+'\n')
f.close()



 

 



"""
import json
"""
dumps:序列化 将其他数据类型转成json格式的字符串
loads:反序列化 将json格式的字符串转换成其他数据类型

dump load
"""
d = {"name":"jason"}
print(d)
res = json.dumps(d)  # json格式的字符串 必须是双引号 >>>: '{"name": "jason"}'
print(res,type(res))
res1 = json.loads(res)
print(res1,type(res1))

d = {"name":"jason"}

with open('userinfo','w',encoding='utf-8') as f:
    json.dump(d,f)  # 装字符串并自动写入文件
with open('userinfo','r',encoding='utf-8') as f:
    res = json.load(f)
    print(res,type(res))


with open('userinfo','w',encoding='utf-8') as f:
    json.dump(d,f)  # 装字符串并自动写入文件
    json.dump(d,f)  # 装字符串并自动写入文件

with open('userinfo','r',encoding='utf-8') as f:
    res1 = json.load(f)  # 不能够多次反序列化
    res2 = json.load(f)
    print(res1,type(res1))
    print(res2,type(res2))


with open('userinfo','w',encoding='utf-8') as f:
    json_str = json.dumps(d)
    json_str1 = json.dumps(d)
    f.write('%s\n'%json_str)
    f.write('%s\n'%json_str1)


with open('userinfo','r',encoding='utf-8') as f:
    for line in f:
        res = json.loads(line)
        print(res,type(res))
t = (1,2,3,4)
print(json.dumps(t))


d1 = {'name':'朱志坚'}
print(json.dumps(d1,ensure_ascii=False))



其他参数说明




codesys的逻辑与 codesys用什么语言_codesys的逻辑与

codesys的逻辑与 codesys用什么语言_字符串_02

Serialize obj to a JSON formatted str.(字符串表示的json对象) 
Skipkeys:默认值是False,如果dict的keys内的数据不是python的基本类型(str,unicode,int,long,float,bool,None),设置为False时,就会报TypeError的错误。此时设置成True,则会跳过这类key 
ensure_ascii:,当它为True的时候,所有非ASCII码字符显示为\uXXXX序列,只需在dump时将ensure_ascii设置为False即可,此时存入json的中文即可正常显示。) 
If check_circular is false, then the circular reference check for container types will be skipped and a circular reference will result in an OverflowError (or worse). 
If allow_nan is false, then it will be a ValueError to serialize out of range float values (nan, inf, -inf) in strict compliance of the JSON specification, instead of using the JavaScript equivalents (NaN, Infinity, -Infinity). 
indent:应该是一个非负的整型,如果是0就是顶格分行显示,如果为空就是一行最紧凑显示,否则会换行且按照indent的数值显示前面的空白分行显示,这样打印出来的json数据也叫pretty-printed json 
separators:分隔符,实际上是(item_separator, dict_separator)的一个元组,默认的就是(‘,’,’:’);这表示dictionary内keys之间用“,”隔开,而KEY和value之间用“:”隔开。 
default(obj) is a function that should return a serializable version of obj or raise TypeError. The default simply raises TypeError. 
sort_keys:将数据根据keys的值进行排序。 
To use a custom JSONEncoder subclass (e.g. one that overrides the .default() method to serialize additional types), specify it with the cls kwarg; otherwise JSONEncoder is used.


View Code


json的格式化输出




codesys的逻辑与 codesys用什么语言_codesys的逻辑与

codesys的逻辑与 codesys用什么语言_字符串_02

import json
data = {'username':['李华','二愣子'],'sex':'male','age':16}
json_dic2 = json.dumps(data,sort_keys=True,indent=2,separators=(',',':'),ensure_ascii=False)
print(json_dic2)


View Code


 

pickle

用于序列化的两个模块

json,用于字符串 和 python数据类型间进行转换

pickle,用于python特有的类型 和 python的数据类型间进行转换

 

pickle模块提供了四个功能:dumps、dump(序列化,存)、loads(反序列化,读)、load  (不仅可以序列化字典,列表...可以把python中任意的数据类型序列化




codesys的逻辑与 codesys用什么语言_codesys的逻辑与

codesys的逻辑与 codesys用什么语言_字符串_02

import pickle
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = pickle.dumps(dic)
print(str_dic)  #一串二进制内容

dic2 = pickle.loads(str_dic)
print(dic2)    #字典

import time
struct_time  = time.localtime(1000000000)
print(struct_time)
f = open('pickle_file','wb')
pickle.dump(struct_time,f)
f.close()

f = open('pickle_file','rb')
struct_time2 = pickle.load(f)
print(struct_time2.tm_year)


View Code


 



pickle
import pickle
d = {'name':'jason'}
res = pickle.dumps(d)  # 将对象直接转成二进制
print(pickle.dumps(d))
res1 = pickle.loads(res)
print(res1,type(res1))

"""
用pickle操作文件的时候 文件的打开模式必须是b模式
"""
with open('userinfo_1','wb') as f:
    pickle.dump(d,f)

with open('userinfo_1','rb') as f:
    res = pickle.load(f)
    print(res,type(res))



这时候机智的你又要说了,既然pickle如此强大,为什么还要学json呢?
这里我们要说明一下,json是一种所有的语言都可以识别的数据结构。
如果我们将一个字典或者序列化成了一个json存在文件里,那么java代码或者js代码也可以拿来用。
但是如果我们用pickle进行序列化,其他语言就不能读懂这是什么了~
所以,如果你序列化的内容是列表或者字典,我们非常推荐你使用json模块
但如果出于某种原因你不得不序列化其他的数据类型,而未来你还会用python对这个数据进行反序列化的话,那么就可以使用pickle

 

subprocess
sub :子 process:进程



1.用户通过网络连接上了你的这台电脑
2.用户输入相应的命令 基于网络发送给了你这台电脑上某个程序
3.获取用户命令 里面subprocess执行该用户命令
4.将执行结果再基于网络发送给用户
这样就实现  用户远程操作你这台电脑的操作

# while True:
#     cmd = input('cmd>>>:').strip()
#     import subprocess
#     obj = subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE,stderr=subprocess.PIPE)
#     # print(obj)
#     print('正确命令返回的结果stdout',obj.stdout.read().decode('gbk'))
#     print('错误命令返回的提示信息stderr',obj.stderr.read().decode('gbk'))