目录
一、import
二、导入数据
三、借款人籍贯分布图
四、性别分布
五、教育程度分布
六、借款人年龄分布
七、借款人职位分布
八、借款人行业分布
九、借款金额分布图
十、借款人收入分布
十一、婚姻状况分布
十二、车贷情况
十三、房贷情况
零、写在前面
①28W条数据我会尽快传到的资源里,大家有兴趣的可以自己下载
②文章只是列举最简单的分布情况,比如还可以看看各年龄段学历组成等
③数据里有一条贷款理由,可以画出词云图
④数据里有对各个借款人的信用进行评级,可以尝试使用深度学习等方法训练预测模型
⑤pandas、matplotlib都是较为基础的用法,不做过多注释
一、import
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib.ticker as ticker
import mpl_toolkits.axisartist as AA
from mpl_toolkits.axisartist.axislines import SubplotZero
import pylab
import jieba
from wordcloud import WordCloud
pylab.mpl.rcParams['font.sans-serif'] = ['SimHei'] #显示中文
plt.rcParams['axes.unicode_minus']=False #用于解决不能显示负号的问题
二、导入数据
①使用read_csv导入数据
②设置列名
③花式索引
④将“id”设置为索引index
⑤去除所有都是nan的数据
data = pd.read_csv("all.csv",encoding="gbk",header=None,parse_dates=True)
data.columns = ["id","借款时间(月)","剩余还款时间(月)","借款金额","notPayInterest","productRepayType",
"贷款类型","利率","性别","籍贯","出生日期","教育程度","工作单位","行业","公司规模","职位","收入",
"车贷","汽车数量","婚姻状况","房贷","房子数量","信用等级","none","none","none","借款理由"]
conciseData = data[["id","借款时间(月)","剩余还款时间(月)","借款金额","贷款类型","利率","性别","籍贯","出生日期","教育程度","工作单位","行业","公司规模","职位","收入",
"车贷","汽车数量","婚姻状况","房贷","房子数量","信用等级","借款理由"]]
conciseData = conciseData.set_index("id")
conciseData = conciseData.dropna(how="all")
三、借款人籍贯分布图
reigon = (conciseData["籍贯"].dropna().apply(lambda x:x.split(":")[0])\
.apply(lambda x:x.replace("省","").replace("市","").replace("壮族自治区","").replace("古",""))\
.value_counts()/(len(conciseData["籍贯"].dropna().apply(lambda x:x.split(":")[0])))*100).drop(index=["保密","null","请选择","深圳"])[:31]
reigon = reigon[["上海","北京","浙江","天津","江苏","广东","福建","山东","辽宁",
"内蒙","重庆","湖南","安徽","江西","海南","湖北","河北","四川","陕西",
"吉林","宁夏","山西","黑龙江","河南","广西","青海","新疆","云南","贵州","西藏","甘肃"]]
plt.figure(figsize=(16,8))
plt.title("借款人籍贯分布图(按2020年各省人均可支配收入排序)",fontsize=20)
plt.ylabel("百分比/%",size=20)
# plt.tick_params(labelsize=15)
plt.xticks(rotation=45,fontsize=15)
plt.yticks(fontsize=15)
# plt.grid(linestyle=":", color="b", linewidth=1)
plt.bar(reigon.index,reigon,
color=["grey","gold","darkviolet","turquoise","r","g","b","c",
"k","darkorange","lightgreen","plum", "tan","khaki", "pink", "skyblue","lawngreen","salmon"])
plt.savefig("借款人籍贯分布图.jpg",dpi=500,bbox_inches = "tight")
四、性别分布
conciseData["性别"].dropna().value_counts().plot.pie(figsize=(5,5),autopct='%.2f%%',textprops = {'fontsize':17, 'color':'black'})
plt.ylabel("性别分布",fontsize=20)
plt.legend(loc=2, bbox_to_anchor=(1.05,1.0),fontsize=15)
plt.savefig("性别分布图.jpg",dpi=500,bbox_inches = "tight")
五、教育程度分布
conciseData["教育程度"] = conciseData["教育程度"].apply(lambda x:x.replace(",","").replace(" ","").replace("短期周转","") \
.replace("","")if isinstance(x,str) else "")
conciseData["教育程度"] = conciseData[~conciseData["教育程度"].isin(["其他借款","投资创业","短期周转","装修借款","请选择","购车借款","专科","大专高中或以下",""])]["教育程度"].dropna()
(conciseData["教育程度"].value_counts()/sum(conciseData["教育程度"].value_counts())).plot.pie(
figsize=(5,5),autopct='%.1f%%',textprops = {'fontsize':17, 'color':'black'})
plt.title("教育程度分布图",fontsize=20)
plt.ylabel("")
plt.legend(loc=2, bbox_to_anchor=(1.05,1.0),fontsize=15)
plt.savefig("教育程度分布图.jpg",dpi=500,bbox_inches = "tight")
六、借款人年龄分布
year = conciseData["出生日期"].apply(lambda x:x.split("/")[0]).value_counts()/len(conciseData["出生日期"])*100
year = year.sort_index()[10:-5]
plt.figure(figsize=(16,8))
plt.title("借款人年龄分布图",fontsize=20)
plt.ylabel("百分比/%",size=20)
# plt.tick_params(labelsize=15)
plt.xticks(rotation=45,fontsize=15)
plt.yticks(fontsize=15)
# plt.grid(linestyle=":", color="b", linewidth=1)
plt.bar(year.index,year,
color=["grey","gold","darkviolet","turquoise","r","g","b","c",
"k","darkorange","lightgreen","plum", "tan","khaki", "pink", "skyblue","lawngreen","salmon"])
plt.savefig("借款人年龄分布图.jpg",dpi=500,bbox_inches = "tight")
七、借款人职位分布
position = (conciseData["职位"].value_counts()/len(conciseData["职位"])*100)[:25]
plt.figure(figsize=(16,8))
plt.title("借款人职位分布图",fontsize=20)
plt.ylabel("百分比/%",size=20)
# plt.tick_params(labelsize=15)
plt.xticks(rotation=60,fontsize=14)
plt.yticks(fontsize=15)
# plt.grid(linestyle=":", color="b", linewidth=1)
plt.bar(position.index,position,
color=["grey","gold","darkviolet","turquoise","r","g","b","c",
"k","darkorange","lightgreen","plum", "tan","khaki", "pink", "skyblue","lawngreen","salmon"])
plt.savefig("借款人职位分布图.jpg",dpi=500,bbox_inches = "tight")
八、借款人行业分布
ind = (conciseData["行业"].value_counts()/len(conciseData["职位"])*100)[:15]
plt.figure(figsize=(16,8))
plt.title("借款人行业分布图",fontsize=20)
plt.ylabel("百分比/%",size=20)
# plt.tick_params(labelsize=15)
plt.xticks(rotation=60,fontsize=20)
plt.yticks(fontsize=20)
# plt.grid(linestyle=":", color="b", linewidth=1)
plt.bar(ind.index,ind,
color=["grey","gold","darkviolet","turquoise","r","g","b","c",
"k","darkorange","lightgreen","plum", "tan","khaki", "pink", "skyblue","lawngreen","salmon"])
plt.savefig("借款人行业分布图.jpg",dpi=500,bbox_inches = "tight")
九、借款金额分布图
conciseData["借款金额"] = conciseData["借款金额"].apply(lambda x:str(int(x))+"元")
loanAmount = conciseData["借款金额"].value_counts().iloc[:10]/sum(conciseData["借款金额"].value_counts().iloc[:10])*100
# plt.figure(figsize=(16,8))
plt.title("借款金额分布图",fontsize=20)
plt.ylabel("百分比/%",size=20)
plt.xticks(rotation=60,fontsize=20)
plt.yticks(fontsize=15)
# plt.grid(linestyle=":", color="b", linewidth=1)
plt.bar(loanAmount.index,loanAmount,
color=["grey","gold","darkviolet","turquoise","r","g","b","c",
"k","darkorange","lightgreen","plum", "tan","khaki", "pink", "skyblue","lawngreen","salmon"])
plt.savefig("借款人金额分布图.jpg",dpi=500,bbox_inches = "tight")
十、借款人收入分布
salary = (conciseData["收入"].value_counts()[:7]/sum(conciseData["收入"].value_counts()[:7]))*100
salary = salary[["1000元以下","1001-2000元","2000-5000元","5000-10000元","10000-20000元","20000-50000元","50000元以上"]]
# plt.figure(figsize=(16,8))
plt.title("借款人收入分布图",fontsize=20)
plt.ylabel("百分比/%",size=20)
# plt.tick_params(labelsize=15)
plt.xticks(rotation=60,fontsize=20)
plt.yticks(fontsize=15)
# plt.grid(linestyle=":", color="b", linewidth=1)
plt.bar(salary.index,salary,
color=["grey","gold","darkviolet","turquoise","r","g","b","c",
"k","darkorange","lightgreen","plum", "tan","khaki", "pink", "skyblue","lawngreen","salmon"])
plt.savefig("借款人收入分布图.jpg",dpi=500,bbox_inches = "tight")
十一、婚姻状况分布
conciseData["婚姻状况"].dropna().value_counts().plot.pie(figsize=(5,5),autopct='%.1f%%',textprops = {'fontsize':17, 'color':'black'})
plt.title("婚姻状况分布图",fontsize=20)
plt.ylabel("")
plt.legend(loc=2, bbox_to_anchor=(1.05,1.0),fontsize=15)
plt.savefig("婚姻状况分布图.jpg",dpi=500,bbox_inches = "tight")
十二、车贷情况
conciseData["车贷"].dropna().value_counts().plot.pie(figsize=(5,5),autopct='%.1f%%',textprops = {'fontsize':17, 'color':'black'})
plt.title("车贷情况分布图",fontsize=20)
plt.ylabel("")
plt.legend(loc=2, bbox_to_anchor=(1.05,1.0),fontsize=15)
plt.savefig("车贷情况分布图.jpg",dpi=500,bbox_inches = "tight")
十三、房贷情况
conciseData["房贷"].dropna().value_counts().plot.pie(figsize=(5,5),autopct='%.1f%%',textprops = {'fontsize':17, 'color':'black'})
plt.title("房贷情况分布图",fontsize=20)
plt.ylabel("")
plt.legend(loc=2, bbox_to_anchor=(1.05,1.0),fontsize=15)
plt.savefig("房贷情况分布图.jpg",dpi=500,bbox_inches = "tight")